892 resultados para OTHER ASPECTS OF PSYCHOPHARMACOLOGY
Resumo:
Relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle are quantified in models, reanalyses, and observations over the period 1980-2000. The robust sensitivity of clear-sky surface net longwave radiation (SNLc) to column-integrated water vapor (CWV) of 1-1.5 Wm(-2) mm(-1) combined with the positive relationship between CWV and surface temperature (T-s) explains substantial increases in clear-sky longwave radiative cooling of the atmosphere (Q(LWc)) to the surface over the period. Clear-sky outgoing longwave radiation (OLRc) is highly sensitive to changes in aerosol and greenhouse gas concentrations in addition to temperature and humidity. Over tropical ocean regions of mean descent, Q(LWc) increases with T-s at similar to 3.5-5.5 W m(-2) K-1 for reanalyses, estimates derived from satellite data, and models without volcanic forcing included. Increased Q(LWc) with warming across the tropical oceans helps to explain model ensemble mean increases in precipitation of 0.1-0.15 mm day(-1) K-1, which are primarily determined by ascent regions where precipitation increases at the rate expected from the Clausius-Clapeyron equation. The implications for future projections in the atmospheric hydrological cycle are discussed
Resumo:
The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.
Resumo:
This paper explores the migration and cultural consumption practices of lesbian households within processes of rural change. Taking forward Phillips' (2004. Progress in Human Geography 28, 5-30) discussion of neglected geographies of rural gentrification, and building upon Halfacree's (2001. International Journal of Population Geography 7, 395-411) critique of dominant conceptualisations of rural in-migrants, the paper presents empirical findings from a qualitative study of lesbian households in Hebden Bridge, West Yorkshire. This follows up an earlier study of rural gentrification (Smith and Phillips, 2001. Journal of Rural Studies 19, 457-469). Lesbian households are shown to be a significant group that socially and culturally (re)produce distinct constructions of rurality, and act as gentrifiers via their migration, residential, and consumption practices. Many parallels to the migration processes of non-lesbian gentrifiers in Hebden Bridge are revealed, with the alternative cultural structures of Hebden Bridge being a key factor. We therefore argue that lesbian households should not be 'othered' within discourses of rural gentrification. The discussion emphasises the value of focussing upon neglected socio-cultural groups in robust ways, in order to shed light on the wider lifestyles and experiences of diverse rural populations, and to deepen understandings of other geographies of rural gentrification. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Greenland ice sheet will decline in volume in a warmer climate. If a sufficiently warm climate is maintained for a few thousand years, the ice sheet will be completely melted. This raises the question of whether the decline would be reversible: would the ice sheet regrow if the climate cooled down? To address this question, we conduct a number of experiments using a climate model and a high-resolution ice-sheet model. The experiments are initialised with ice sheet states obtained from various points during its decline as simulated in a high-CO2 scenario, and they are then forced with a climate simulated for pre-industrial greenhouse gas concentrations, to determine the possible trajectories of subsequent ice sheet evolution. These trajectories are not the reverse of the trajectory during decline. They converge on three different steady states. The original ice-sheet volume can be regained only if the volume has not fallen below a threshold of irreversibility, which lies between 80 and 90% of the original value. Depending on the degree of warming and the sensitivity of the climate and the ice-sheet, this point of no return could be reached within a few hundred years, sooner than CO2 and global climate could revert to a pre-industrial state, and in that case global sea level rise of at least 1.3 m would be irreversible. An even larger irreversible change to sea level rise of 5 m may occur if ice sheet volume drops below half of its current size. The set of steady states depends on the CO2 concentration. Since we expect the results to be quantitatively affected by resolution and other aspects of model formulation, we would encourage similar investigations with other models.
Resumo:
This study investigated the development of three aspects of linguistic prosody in a group of children with Williams syndrome compared to typically developing children. The prosodic abilities investigated were: (1) the ability to understand and use prosody to make specific words or syllables stand out in an utterance (focus); (2) the ability to understand and use prosody to disambiguate complex noun phrases (chunking); (3) the ability to understand and use prosody to regulate conversational behaviour (turn-end). The data were analysed using a cross-sectional developmental trajectory approach. The results showed that, relative to chronological age, there was a delayed onset in the development of the ability of children with WS to use prosody to signal the most important word in an utterance (the focus function). Delayed rate of development was found for all the other aspects of expressive and receptive prosody under investigation. However, when non-verbal mental age was taken into consideration, there were no differences between the children with WS and the controls neither with the onset nor with the rate of development for any of the prosodic skills under investigation apart from the ability to use prosody in order to regulate conversational behaviour. We conclude that prosody is not a ‘preserved’ cognitive skill in WS. The genetic factors, development in other cognitive domains and environmental influences affect developmental pathways and as a result, development proceeds along an atypical trajectory.
Resumo:
Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fallout of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.
Resumo:
The International System of Units (SI) is founded on seven base units, the metre, kilogram, second, ampere, kelvin, mole and candela corresponding to the seven base quantities of length, mass, time, electric current, thermodynamic temperature, amount of substance and luminous intensity. At its 94th meeting in October 2005, the International Committee for Weights and Measures (CIPM) adopted a recommendation on preparative steps towards redefining the kilogram, ampere, kelvin and mole so that these units are linked to exactly known values of fundamental constants. We propose here that these four base units should be given new definitions linking them to exactly defined values of the Planck constant h, elementary charge e, Boltzmann constant k and Avogadro constant NA, respectively. This would mean that six of the seven base units of the SI would be defined in terms of true invariants of nature. In addition, not only would these four fundamental constants have exactly defined values but also the uncertainties of many of the other fundamental constants of physics would be either eliminated or appreciably reduced. In this paper we present the background and discuss the merits of these proposed changes, and we also present possible wordings for the four new definitions. We also suggest a novel way to define the entire SI explicitly using such definitions without making any distinction between base units and derived units. We list a number of key points that should be addressed when the new definitions are adopted by the General Conference on Weights and Measures (CGPM), possibly by the 24th CGPM in 2011, and we discuss the implications of these changes for other aspects of metrology.
Resumo:
It is becoming increasingly difficult for the public to attempt to assess risks using traditional methods such as smell, taste or other physical attributes of food. The existence of extrinsic cues such as the country of origin (COO) of food can help to make food purchase decisions easier for consumers. However, the use of extrinsic cues depends heavily on the extent to which consumers trust such signals to be indicative of quality or safety, which in turn depends on the credibility behind that cue. This paper aims to examine consumers association of domestically produced food with increased food safety standards and the association of COO and food safety information with socio-demographics and other aspects of consumer psychology such as attitudes, risk perception and trust. Using an ordered probit model, domestic production is examined as an extrinsic cue for food safety by looking at the relationship with trust in food safety information provided by national food standards agencies (NFSAs) and other socio-demographic characteristics, based on nationally representative data from 2725 face-to-face interviews across five European countries. Results suggest that domestic production of food is an extrinsic cue for food safety and as consumers place increasing importance on food safety they are more interested in food produced in their own country. This, coupled with consumer trust in a strong, and independent national food standards agency, suggests the potential exists for the increased consumption of domestically produced foods.