963 resultados para Numerical Simulations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the effects of Jupiter mass growth in order to permanently capture prograde satellites. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time while considering the decrease in Jupiter's mass. We considered the particle's initial conditions to be prograde, at pericenter, in the region 100R(4) <= a <= 400R(4) and 0 <= e <= 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values give an indication of the conditions that are necessary for capture. An analysis of these results shows that prograde satellite capture is more complex than a retrograde one. It occurs in a two-step process. First, when the particles get inside about 0.85R(Hill) (Hills' radius), they become weakly bound to Jupiter. Then, they keep migrating toward the planet with a strong decrease in eccentricity, while the planet is growing. The radial oscillation of the particles reduces significantly when they reach a radial distance that is less than about 0.45R(Hill) from the planet. Three-dimensional simulations for the known prograde satellites of Jupiter were performed. The results indicate that Leda, Himalia, Lysithea, and Elara could have been permanently captured when Jupiter had between 50% and 60% of its present mass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, we study the stability of hypothetical satellites that are coorbital with Enceladus and Mimas. We performed numerical simulations of 50 particles around the triangular Lagrangian equilibrium points of Enceladus and Mimas taking into account the perturbation of Mimas, Enceladus, Tethys, Dione, Titan and the oblateness of Saturn. All particles remain on tadpole orbits after 10 000 yr of integration. Since in the past the orbit of Enceladus and Mimas expanded due to the tidal perturbation, we also simulated the system with Enceladus and Mimas at several different values of semimajor axes. The results show that in general the particles remain on tadpole orbits. The exceptions occur when Enceladus is at semimajor axes that correspond to 6:7, 5:6 and 4:5 resonances with Mimas. Therefore, if Enceladus and Mimas had satellites librating around their Lagrangian triangular points in the past, they would have been removed if Enceladus crossed one of these first-order resonances with Mimas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gravitational capture can be used to explain the existence of the irregular satellites of giants planets. However, it is only the first step since the gravitational capture is temporary. Therefore, some kind of non-conservative effect is necessary to to turn the temporary capture into a permanent one. In the present work we study the effects of Jupiter mass growth for the permanent capture of retrograde satellites. An analysis of the zero velocity curves at the Lagrangian point L-1 indicates that mass accretion provides an increase of the confinement region ( delimited by the zero velocity curve, where particles cannot escape from the planet) favoring permanent captures. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time considering the decrease of M-4. We considered initial conditions of the particles to be retrograde, at pericenter, in the region 100 R-4 less than or equal to a less than or equal to 400 R-4 and 0 less than or equal to e < 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values are an indication of the necessary conditions that could provide capture. An analysis of these results shows that retrograde satellites would be captured as soon as they get inside the Hills' radius and after that they keep migrating toward the planet while it is growing. For the region where the orbits of the four old retrograde satellites of Jupiter ( Ananke, Carme, Pasiphae and Sinope) are located we found that such satellites could have been permanently captured when Jupiter had between 62% and 93% of its present mass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we study the stability of hypothetical satellites of extrasolar planets. Through numerical simulations of the restricted elliptic three-body problem we found the borders of the stable regions around the secondary body. From the empirical results, we derived analytical expressions of the critical semimajor axis beyond which the satellites would not remain stable. The expressions are given as a function of the eccentricities of the planet, e(P), and of the satellite, e(sat). In the case of prograde, satellites, the critical semimajor axis, in the units of Hill's radius, is given by a(E) approximate to 0.4895 (1.0000 - 1.0305e(P) - 0.2738e(sat)). In the case of retrograde satellites, it is given by a(E) approximate to 0.9309 (1.0000 - 1.0764e(P) - 0.9812e(sat)). We also computed the satellite stability region (a(E)) for a set of extrasolar planets. The results indicate that extrasolar planets in the habitable zone could harbour the Earth-like satellites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A practical problem of synchronization of a non-ideal (i.e. when the excitation is influenced by the response of the system) and non-linear vibrating system was posed and investigated by means of numerical simulations. Two rotating unbalanced motors compose the mathematical model considered here with limited power supply mounted on the horizontal beam of a simple portal frame. As a starting point, the problem is reduced to a four-degrees-of-freedom model and its equations of motion, derived elsewhere via a Lagrangian approach, are presented. The numerical results show the expected phenomena associated with the passage through resonance with limited power. Further, for a two-to-one relationship between the frequencies associated with the first symmetric mode and the sway mode, by using the variation of torque constants, the control of the self-synchronization and synchronization (in the system) are observed at certain levels of excitations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we deal with a micro electromechanical system (MEMS), represented by a micro-accelerometer. Through numerical simulations, it was found that for certain parameters, the system has a chaotic behavior. The chaotic behaviors in a fractional order are also studied numerically, by historical time and phase portraits, and the results are validated by the existence of positive maximal Lyapunov exponent. Three control strategies are used for controlling the trajectory of the system: State Dependent Riccati Equation (SDRE) Control, Optimal Linear Feedback Control, and Fuzzy Sliding Mode Control. The controls proved effective in controlling the trajectory of the system studied and robust in the presence of parametric errors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Para avaliar o comportamento da suspensão do pulverizador autopropelido, foram desenvolvidos modelos físicos e matemáticos em função da excitação ocasionada pelas irregularidades do solo. Neste trabalho, estas irregularidades são representadas por obstáculos de uma pista normalizada segundo a norma ISO 5008. As equações do movimento são obtidas a partir dos modelos matemáticos de meio veículo. As simulações numéricas são executadas nos softwares Matlab® e Simulink®. A partir da entrada conhecida, podem-se determinar as características dos elementos da suspensão para obter níveis desejáveis de conforto e segurança. Foram analisadas quatro diferentes configurações do sistema, variando-se a relação de rigidez a partir de um modelo considerado padrão. Constatou-se que o aumento da relação de rigidez resulta na redução da aceleração vertical e no aumento do curso da suspensão, melhorando o conforto e diminuindo a segurança.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)