939 resultados para Numeric simulations
Resumo:
The evolution of the northwest African hydrological balance throughout the Pleistocene epoch influenced the migration of prehistoric humans**1. The hydrological balance is also thought to be important to global teleconnection mechanisms during Dansgaard-Oeschger and Heinrich events**2. However, most high-resolution African climate records do not span the millennial-scale climate changes of the last glacial-interglacial cycle**1, 3, 4, 5, or lack an accurate chronology**6. Here, we use grain-size analyses of siliciclastic marine sediments from off the coast of Mauritania to reconstruct changes in northwest African humidity over the past 120,000 years. We compare this reconstruction to simulations of palaeo-humidity from a coupled atmosphere-ocean-vegetation model. These records are in good agreement, and indicate the reoccurrence of precession-forced humid periods during the last interglacial period similar to the Holocene African Humid Period. We suggest that millennial-scale arid events are associated with a reduction of the North Atlantic meridional overturning circulation and that millennial-scale humid events are linked to a regional increase of winter rainfall over the coastal regions of northwest Africa.
Resumo:
During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.
Resumo:
Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase.
Resumo:
Isotopic content assessment has a paramount importance for safety and storage reasons. During the latest years, a great variety of codes have been developed to perform transport and decay calculations, but only those that couple both in an iterative manner achieve an accurate prediction of the final isotopic content of irradiated fuels. Needless to say, them all are supposed to pass the test of the comparison of their predictions against the corresponding experimental measures.
Resumo:
Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. Extracting dynamic and structural properties of liquid LiPb mixtures via molecular dynamics simulations, represent a crucial step for multiscale modeling efforts in order to understand the suitability of this compound for future Nuclear Fusion technologies. At present a Li-Pb cross potential is not available in the literature. Here we present our first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results represent the establishment of a solid base as a previous but crucial step to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the implemented potentials for Li and Pb are realistic to simulate both elements in the liquid phase.
Resumo:
Pb17Li is today a reference breeder material in diverse fusion R&D programs worldwide. One of the main issues is the problem of liquid metals breeder blanket behavior. The knowledge of eutectic properties like optimal composition, physical and thermodynamic behavior or diffusion coefficients of Tritium are extremely necessary for current designs. In particular, the knowledge of the function linking the tritium concentration dissolved in liquid materials with the tritium partial pressure at a liquid/gas interface in equilibrium, CT =f(PT ), is of basic importance because it directly impacts all functional properties of a blanket determining: tritium inventory, tritium permeation rate and tritium extraction efficiency. Nowadays, understanding the structure and behavior of this compound is a real goal in fusion engineering and materials science. Atomistic simulations of liquids can provide much information; not only supplementing experimental data, but providing new tests of theories and ideas, making specific predictions that require experimental tests, and ultimately helping to a deeper understanding
Resumo:
Discrete element method (DEM) is a numerical technique widely used for simulating the mechanical behavior of granular materials involved in many food and agricultural industry processes. Additionally, this technique is also a powerful tool to understand many complex phenomena related to the mechanics of granular materials. However, to make use of the potential of this technique it is necessary to develop DEM models capable of representing accurately the reality. For that, among some other questions, it is essential that the values of the microscopic material properties used to define the numerical model are accurately determined.
Resumo:
We will present recent developments in the calculation of opacity tables suitable for including in the radiation hydrodynamic code ARWEN [1] to study processes like ICF or X-ray secondary sources. For these calculations we use the code BiG BART in LTE conditions, with self-consistent data generated with the Flexible Atomic Code (FAC) [2]. Non-LTE effects are approximately taken into account by means of the improved RADIOM model [3], which makes use of existing LTE data tables.
Resumo:
Este trabajo presenta un análisis y una metodología para la armonización de inventarios de emisiones utilizados en modelos de calidad del aire.
Resumo:
Dislocation mobility —the relation between applied stress and dislocation velocity—is an important property to model the mechanical behavior of structural materials. These mobilities reflect the interaction between the dislocation core and the host lattice and, thus, atomistic resolution is required to capture its details. Because the mobility function is multiparametric, its computation is often highly demanding in terms of computational requirements. Optimizing how tractions are applied can be greatly advantageous in accelerating convergence and reducing the overall computational cost of the simulations. In this paper we perform molecular dynamics simulations of ½ 〈1 1 1〉 screw dislocation motion in tungsten using step and linear time functions for applying external stress. We find that linear functions over time scales of the order of 10–20 ps reduce fluctuations and speed up convergence to the steady-state velocity value by up to a factor of two.
Resumo:
This paper employs a 3D hp self-adaptive grid-refinement finite element strategy for the solution of a particular electromagnetic waveguide structure known as Magic-T. This structure is utilized as a power divider/combiner in communication systems as well as in other applications. It often incorporates dielectrics, metallic screws, round corners, and so on, which may facilitate its construction or improve its design, but significantly difficult its modeling when employing semi-analytical techniques. The hp-adaptive finite element method enables accurate modeling of a Magic-T structure even in the presence of these undesired materials/geometries. Numerical results demonstrate the suitability of the hp-adaptive method for modeling a Magic-T rectangular waveguide structure, delivering errors below 0.5% with a limited number of unknowns. Solutions of waveguide problems delivered by the self-adaptive hp-FEM are comparable to those obtained with semi-analytical techniques such as the Mode Matching method, for problems where the latest methods can be applied. At the same time, the hp-adaptive FEM enables accurate modeling of more complex waveguide structures.
Resumo:
Through progress in medical imaging, image analysis and finite element (FE) meshing tools it is now possible to extract patient-specific geometries from medical images of abdominal aortic aneurysms(AAAs), and thus to study clinically-relevant problems via FE simulations. Such simulations allow additional insight into human physiology in both healthy and diseased states. Medical imaging is most often performed in vivo, and hence the reconstructed model geometry in the problem of interest will represent the in vivo state, e.g., the AAA at physiological blood pressure. However, classical continuum mechanics and FE methods assume that constitutive models and the corresponding simulations begin from an unloaded, stress-free reference condition.
Resumo:
El objetivo del presente estudio es el análisis de un sistema complejo, el Acuífero de la Mancha Occidental, mediante un modelo numérico de simulación que represente de la manera más rigurosa posible la evolución del Sistema Acuífero 23. Este modelo se realiza en régimen permanente con una rigurosa configuración del sistema desde el punto de vista geológico y geométrico. De esta forma se deja iniciado y planeado un modelo y su estructura que será una base real de futuras formulaciones transitorias, base de los sucesivos análisis de explotación y predicción. . Las distintas situaciones que en las últimas décadas ha experimentado el Sistema 23, soluciones que se han dado para las mismas, y los posibles planes de actuación que se podrían llevar a cabo en un futuro frente a condiciones cambiantes de clima y explotación se podrán estudiar a partir del presente modelo de simulación numérica. ABSTRACT The main purpose of this study is to analyses a complex system such as Western La Mancha Aquifer by the use of a numeric model that simulates as accurately as possible the evolution of Aquifer 23. This model is made in steady state with a thorough configuration of the system from both the geological and geometric point of view. Therefore, it is left initiated with a planned model and its structure which will be used as a real base for following transient flow simulations that also will be the foundation of subsequent prediction and exploitation analysis. The different situations that Aquifer 23 has experienced during the last decades; the solutions that have been given for them; and the possible plans that would be implemented in the future in order to deal with the changing environmental and exploitation conditions will be able to be studied using this model.