897 resultados para Nuclear magnetic resonance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rotating-frame nuclear magnetic relaxation rate of spins diffusing on a disordered lattice has been calculated by Monte Carlo methods. The disorder includes not only variation in the distances between neighbouring spin sites but also variation in the hopping rate associated with each site. The presence of the disorder, particularly the hopping rate disorder, causes changes in the time-dependent spin correlation functions which translate into asymmetry in the characteristic peak in the temperature dependence of the dipolar relaxation rate. The results may be used to deduce the average hopping rate from the relaxation but the effect is not sufficiently marked to enable the distribution of the hopping rates to be evaluated. The distribution, which is a measure of the degree of disorder, is the more interesting feature and it has been possible to show from the calculation that measurements of the relaxation rate as a function of the strength of the radiofrequency spin-locking magnetic field can lead to an evaluation of its width. Some experimental data on an amorphous metal - hydrogen alloy are reported which demonstrate the feasibility of this novel approach to rotating-frame relaxation in disordered materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Guest-host interactions of ibuprofen tromethamine salt (Ibu.T) with native and modified cyclodextrins (CyDs) have been investigated using several techniques, namely phase solubility diagrams (PSDs), proton nuclear magnetic resonance (H-1 NMR), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffractometry (XRPD). scanning-electron microscopy (SEM) and molecular mechanics (MM). From the analysis of PSD data (A(L)-type) it is concluded that the anionic tromethamine salt of ibuprofen (pK(a) = 4.55) forms 1: 1 soluble complexes with all CyDs investigated in buffered water at pH 7.0, while the neutral form of Ibu forms an insoluble complex with beta-CyD (B-S-type) in buffered water at pH 2.0. Ibu.T has a lower tendency to complex with beta-CyD (K-11 = 58 M-1 at pH 7.0) compared with the neutral Ibu (K-11 = 4200 M (1)) in water. Complex formation of Ibu.T with beta-CyD (Delta G degrees = -20.4 kJ/mol) is enthalpy driven (Delta H degrees = -22.9 kJ/mol) and is accompanied by a small unfavorable entropy (Delta S degrees = -8.4 J/mol K) change. H-1 NMR studies and MM computations revealed that, on complexation, the hydrophobic central benzene ring of lbu.T and part of the isobutyl group reside within the beta-CyD cavity leaving the peripheral groups (carboxylate, tromethamine and methyl groups) located near the hydroxyl group networks at either rim of beta-CyD. PSD, H-1 NMR, DSC, FT-IR, XRPD, SEM and MM studies confirmed the formation of Ibu.T/beta-CyD inclusion complex in solution and the solid state. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2A is a transcription factor that plays a particularly critical role in lymphopoiesis. The chromosomal translocation 1;19, disrupts the E2A gene and results in the expression of the fusion oncoprotein E2A-PBX1, which is implicated in acute lymphoblastic leukemia. Both E2A and E2A-PBX1 contain two activation domains, AD1 and AD2, which comprise conserved ΦxxΦΦ motifs where Φ denotes a hydrophobic amino acid. These domains function to recruit transcriptional co-activators and repressors, including the histone acetyl transferase CREB binding protein (CBP) and its paralog p300. The PCET motif within E2A AD1 interacts with the KIX domain of CBP/p300, the disruption of which abrogates the transcriptional activation by E2A and the transformative properties of E2A-PBX1. The generation of a peptide-based inhibitor targeting the PCET:KIX interaction would serve useful in further assessing the role of E2A and E2A-PBX1 in lymphopoiesis and leukemogenesis. An interaction between E2A AD2 and the KIX domain has also been recently identified, and the TAZ domains of CBP/p300 have been shown to interact with several transcription factors that contain ΦxxΦΦ motifs. Thus the design of an inhibitor of the E2A:CBP/p300 interaction requires the full complement of interactions between E2A and the various domains of CBP/p300 to be elucidated. Here, we have used nuclear magnetic resonance (NMR) spectroscopy to determine that AD2 interacts with KIX at the same site as PCET, which indicates that the E2A:KIX interaction can be disrupted by targeting a single binding site. Using an iterative synthetic peptide microarray approach, a peptide with the sequence DKELQDLLDFSLQY was derived from PCET to interact with KIX with higher affinity than the wild type sequence. This peptide now serves as a lead molecule for further development as an inhibitor of the E2A:CBP/p300 interaction. Fluorescence anisotropy, peptide microarray technology, and isothermal titration calorimetry were employed to characterize interactions between both TAZ domains of CBP/p300 and the PCET motif and AD2 of E2A. Alanine substitution of residues within PCET demonstrated that the ΦxxΦΦ motif is a key mediator of these interactions, analogous to the PCET:KIX interaction. These findings now inform future work to establish possible physiological roles for the E2A:TAZ1 and E2A:TAZ2 interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of melamine into food products is banned but its misuse has been widely reported in both animal feeds and food. The development of a rapid screening immunoassay for monitoring of the substance is an urgent requirement. Two haptens of melamine were synthesized by introducing spacer arms of different lengths and structures on the triazine ring of the analyte molecular structure. 6-Aminocaproic acid and 3-mercaptopropionic acid were reacted with 2-chloro-4,6-diamino-1,3,5-triazine (CAAT) to produce hapten 1[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylamino) hexanoic acid] and hapten 2[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylthio) propanoic acid]. respectively. The molecular structures of the two haptens were identified by I H nuclear magnetic resonance spectrometry, mass spectrometry and infrared spectrometry. An immunogen was prepared by coupling hapten 1 to bovine serum albumin (BSA). Two plate coating antigens were prepared by coupling both haptens to egg ovalbumin (OVA). A competitive indirect enzyme-linked immunosorbent assay (ciELISA) was developed to evaluate homogeneous and heterogeneous assay formats. The results showed that polyclonal antibodies with high titers were obtained, and the heterogeneous immunoassay format demonstrated a better performance with an IC50 of 70.6 ng mL(-1), a LOD of 2.6 ng mL(-1) and a LOQ of 7.6 ng mL(-1). Except for cyromazine, no obvious cross-reactivity to common compounds was found. The data showed that the hapten synthesis was successful and the resultant antisera could be used in an immunoassay for the rapid and sensitive detection of this banned chemical. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, Cu-63 nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO2 catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO2 at 120 degrees C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO2 at 140 degrees C, corresponding to an initial reaction rate of 104 mmol g(cat)(-1) s(-1). The activation energy on the Cu/mesoporous TiO2 catalyst was found to be (144 +/- 5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123 +/- 3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO2 support (75 +/- 2 kJ mol(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metallo-phthalocyanines (MPcs) are an interesting group of organic semiconductor materials for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPcs [1, 2]. As for organic semiconductors in general, many of the interesting properties of the MPcs such as magnetism, light absorption and charge transport, are highly anisotropic [2, 3]. To maximise the efficiency of a device based on these materials it is therefore important to study their molecular orientation in films and to assess the influence of different growth conditions and substrate treatments.
X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation) in crystalline materials, but it cannot provide any information about amorphous or nanocrystalline films. In electron paramagnetic resonance (EPR) spectroscopy the signal comes from the spin of unpaired electrons in the material. This technique therefore does not require the sample to be crystalline. It works for any sample with paramagnetic centres such as the MPcs where the unpaired electrons are contributed by the metal. In this paper we present a continuous-wave X-band EPR study using the anisotropy of the EPR spectrum of CuPc [4] to determine the orientation effects in different types of CuPc films. From these measurements we gain insight into the molecular arrangement of films with different spin concentrations, and apply our technique to the study of molecular orientation in photovoltaic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that low-density lipoprotein (LDL) modified by glycation may be more susceptible to oxidation and thus, enhance its atherogenicity. Using affinity chromatography, LDL glycated in vivo (G-LDL) and relatively nonglycated. (N-LDL) subfractions can be isolated from the same individual. The extent of and susceptibility to oxidation of N-LDL compared with G-LDL was determined in 15 type 1 diabetic patients. Total LDL was isolated and separated by boronate affinity chromatography into relatively glycated (G-) and nonglycated (N-) subfractions. The extent of glycation, glycoxidation, and lipoxidation, lipid soluble antioxidant content, susceptibility to in vitro oxidation, and nuclear magnetic resonance (NMR)-determined particle size and subclass distribution were determined for each subfraction. Glycation, (fructose-lysine) was higher in G-LDL versus N-LDL, (0.28 +/- 0.08 v 0.13 +/- 0.04 mmol/mol lysine, P <.0001). However, levels of glycoxidation/lipoxidation products and of antioxidants were similar or lower in G-LDL compared with N-LDL and were inversely correlated with fructose-lysine (FL) concentrations in G-LDL, but positively correlated in N-LDL. In vitro LDL (CuCl2) oxidation demonstrated a longer lag time for oxidation of G-LDL than N-LDL (50 +/- 0.16 v 37 +/- 0.15 min, P <.01), but there was no difference in the rate or extent of lipid oxidation, nor in any aspect of protein oxidation. Mean LDL particle size and subclass distribution did not differ between G-LDL and N-LDL. Thus, G-LDL from well-controlled type 1 diabetic patients is not more modified by oxidation, more susceptible to oxidation, or smaller than relatively N-LDL, suggesting alternative factors may contribute to the atherogenicity of LDL from type 1 diabetic patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoproteins may contribute to diabetic nephropathy. Nuclear magnetic resonance (NMR) can quantify subclasses and mean particle size of very low density lipoprotein (VLDL), low density lipoprotein (LDL), and high density lipoprotein (HDL), and LDL particle concentration. The relationship between detailed lipoprotein analyses and diabetic nephropathy is of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To relate the nuclear magnetic resonance (NMR)-determined lipoprotein profile, conventional lipid and apolipoprotein measures, and in vitro oxidizibility of LDL with gender and glycemia in type 1 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microbial contribution to soil organic matter (SOM) has recently been shown to be much larger than previously thought and thus its role in carbon sequestration may also be underestimated. In this study we employ C-13 ((CO2)-C-13) to assess the potential CO2 sequestration capacity of soil chemoautotrophic bacteria and combine nuclear magnetic resonance (NMR) with stable isotope probing (SIP), techniques that independently make use of the isotopic enrichment of soil microbial biomass. In this way molecular information generated from NMR is linked with identification of microbes responsible for carbon capture. A mathematical model is developed to determine real-time CO2 flux so that net sequestration can be calculated. Twenty-eight groups of bacteria showing close homologies with existing species were identified. Surprisingly, Ralstonia eutropha was the dominant group. Through NMR we observed the formation of lipids, carbohydrates, and proteins produced directly from CO2 utilized by microbial biomass. The component of SOM directly associated with CO2 capture was calculated at 2.86 mg C (89.21 mg kg(-1)) after 48 h. This approach can,differentiate between SOM derived through microbial uptake of CO2 and other SOM constituents and represents a first step in tracking the fate and dynamics of microbial biomass in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs) have been successfully radiolabelled with cobalt-57 (57Co) (T1/2 = 270 days) via the attachment of the bifunctional caged ligand MeAMN3S3sar. In this study MeAMN3S3sar has been synthesized and coupled to MWCNTs to form the conjugate MWCNT–MeAMN3S3sar. Synthesis was confirmed with nuclear magnetic resonance. X-ray photoelectron spectroscopy (XPS) confirmed the conjugation. Non-radioactive labelling of this conjugate was completed with Cu(II) ions to confirm the stability of the MeAMN3S3sar after coupling with the MWCNTs. The complexation of the Cu(II) was also confirmed with XPS. Transmission electron microscopy was used to demonstrate that the coupling reaction had a negligible effect on the size and shape of the MWCNTs. Radiolabelling of the MWCNT–MeAMN3S3sar conjugate and pristine (untreated) MWCNTs (non-specific) with the gamma-emitting radioactive isotope 57Co were compared. The radiolabelling efficiency of the MWCNT–MeAMN3S3sar conjugate was significantly higher (95% vs. 0.1%) (P ⩽ 0.001) than for the unconjugated pristine MWCNTs. This will allow for the potential tracking of nanoparticle movement in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six amphiphilic star copolymers comprising hydrophilic units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and hydrophobic units of methyl methacrylate (MMA) were prepared by the sequential group transfer polymerization (GTP) of the two comonomers and ethylene glycol dimethacrylate (EGDMA) cross-linker. Four star-block copolymers of different compositions, one miktoarm star, and one statistical copolymer star were synthesized. The molecular weights (MWs) and MW distributions of all the star copolymers and their linear homopolymer and copolymer precursors were characterized by gel permeation chromatography (GPC), while the compositions of the stars were determined by proton nuclear magnetic resonance (H-1 NMR) spectroscopy. Tetrahydrofuran (THF) solutions of all the star copolymers were characterized by static light scattering to determine the absolute weight-average MW ((M) over bar (w)) and the number of arms of the stars. The R, of the stars ranged between 359,000 and 565,000 g mol(-1), while their number of arms ranged between 39 and 120. The star copolymers were soluble in acidic water at pH 4 giving transparent or slightly opaque solutions, with the exception of the very hydrophobic DMAEMA(10)-b-MMA(30)-star, which gave a very opaque solution. Only the random copolymer star was completely dispersed in neutral water, giving a very opaque solution. The effective pKs of the copolymer stars were determined by hydrogen ion titration and were found to be in the range 6.5-7.6. The pHs of precipitation of the star copolymer solutions/dispersions were found to be between 8.8-10.1, except for the most hydrophobic DMA-EMA(10)-b-MMA(30)-Star, which gave a very opaque solution over the whole pH range. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optically active S-alkyl-N, N'-bis((S)-1-phenylethyl) thiouronium salts, abbreviated as (S)-[Cnpetu] Y (where Y is an anion; n = 1, 2, 3, 4, 6, 8, 10, 12 or 16), have been prepared and studied by a broad spectrum of analyses. This consists of density, viscosity, and conductivity determination, followed by a discussion of relevant correlations. Unusual trends depending on the S-alkyl chain length were documented for (S)-[Cnpetu][ NTf2] series (where [NTf2] = bis{(trifluoromethyl) sulfonyl} amide), including the viscosity decreasing with increasing chain length, and the conductivity showing a maximum between the S-butyl and the S-hexyl derivative. In addition, a hindered rotamerism of the thiouronium cation in dmso-d(6) solution was recognised by H-1 and C-13 NMR techniques. Thorough analysis of NMR spectra confirmed that the main contribution comes from rotation about the partial double C-S bond. For the first time, a neat thiouronium ionic liquid system has been subjected to quantitative analysis of hindered rotamerism by dynamic NMR coalescence studies, with estimated activation energy for rotation of 63.9 +/- 0.4 kJ mol(-1). Finally, the application of (S)-[C(n)petu] Y salts as chiral discriminating agents for carboxylates by 1H NMR spectroscopy was further investigated, demonstrating the influence of the S-alkyl chain length on chiral recognition; (S)-[C(2)petu][NTf2] ionic liquid with the mandelate anion gave the best results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnopharmacological relevance: The ethnobotanical use of Aframomum melegueta in the treatment of urinary tract and soft tissue infection suggested that the plant has antimicrobial activity.

Materials and methods: To substantiate the folkloric claims, an acetone, 50:50 acetone:methanol and 2:1 chloroform:methanol extracts were tested against Escherichia coli K12; acetone extract and the fractions of acetone extracts were tested against Listeria monocytogenes. Bioassay-guided fractionation was performed on the extract using L. monocytogenes as the test organism to isolate the bioactive compounds which were then tested against all the other organisms.

Results: Four known labdane diterpenes (G3 and G5) were isolated for the first time from the rhizomes of A. melegueta and purified. These were tested against E. coli, L. monocytogenes, methicillin resistant Staphylococus aureus (MRSA) and S. aureus to determine antibacterial activity. The result showed that two compounds G3 and G5 exhibited more potent antibacterial activity compared to the current clinically used antibiotics ampicillin, gentamicin and vancomycin and can be potential antibacterial lead compounds. The structure of the labdane diterpenes were elucidated using nuclear magnetic resonance (NMR) spectroscopy and Mass spectrometry. A possible mode of action of the isolated compound G3 and its potential cytotoxicity towards mammalian cells were also discussed.

Conclusion: The results confirmed the presence of antibacterial compounds in the rhizomes of A. melegueta with a favourable toxicity profile which could be further optimized as antibacterial lead compounds.