868 resultados para Nonlinear constrained optimization problems
Resumo:
Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.
Resumo:
This study aims to determine optimal locations of dual trailing-edge flaps and blade stiffness to achieve minimum hub vibration levels in a helicopter, with low penalty in terms of required trailing-edge flap control power. An aeroelastic analysis based on finite elements in space and time is used in conjunction with an optimal control algorithm to determine the flap time history for vibration minimization. Using the aeroelastic analysis, it is found that the objective functions are highly nonlinear and polynomial response surface approximations cannot describe the objectives adequately. A neural network is then used for approximating the objective functions for optimization. Pareto-optimal points minimizing both helicopter vibration and flap power ale obtained using the response surface and neural network metamodels. The two metamodels give useful improved designs resulting in about 27% reduction in hub vibration and about 45% reduction in flap power. However, the design obtained using response surface is less sensitive to small perturbations in the design variables.
Resumo:
Organic polymeric electro-optic (E-O) materials have attracted significant attention because of their potential use as fast and efficient components of integrated photonic devices (1,2). However, the practical application of these materials in optical devices is somewhat limited by the stringent material requirements imposed by the device design, fabrication processes and operating environments. Among the various material requirements, the most notable ones are large electro-optic coefficients (r(33)) and high thermal stability (3). The design of poled polymeric materials with high electro-optic activity (r(33)) involves the optimization of the percent incorporation of efficient (large beta mu) second order nonlinear optical (NLO) chromophores into the polymer matrices and the effective creation of poling-induced non-centrosymmetric structures. The factors that affect the material stability are a) the inherent thermal stability of the NLO chromophores, b) the chemical stability of the NLO chromophores during the polymer processing conditions, and c) the long-term dipolar alignment stability at high temperatures. Although considerable progress has been made in achieving these properties (4), organic polymeric materials suitable for practical E-O device applications are yet to be developed. This chapter highlights some of our approaches in the optimization of molecular and material nonlinear optical and thermal properties.
Resumo:
Alopex is a correlation-based gradient-free optimization technique useful in many learning problems. However, there are no analytical results on the asymptotic behavior of this algorithm. This article presents a new version of Alopex that can be analyzed using techniques of two timescale stochastic approximation method. It is shown that the algorithm asymptotically behaves like a gradient-descent method, though it does not need (or estimate) any gradient information. It is also shown, through simulations, that the algorithm is quite effective.
Resumo:
A geometrically non-linear Spectral Finite Flement Model (SFEM) including hysteresis, internal friction and viscous dissipation in the material is developed and is used to study non-linear dissipative wave propagation in elementary rod under high amplitude pulse loading. The solution to non-linear dispersive dissipative equation constitutes one of the most difficult problems in contemporary mathematical physics. Although intensive research towards analytical developments are on, a general purpose cumputational discretization technique for complex applications, such as finite element, but with all the features of travelling wave (TW) solutions is not available. The present effort is aimed towards development of such computational framework. Fast Fourier Transform (FFT) is used for transformation between temporal and frequency domain. SFEM for the associated linear system is used as initial state for vector iteration. General purpose procedure involving matrix computation and frequency domain convolution operators are used and implemented in a finite element code. Convergnence of the spectral residual force vector ensures the solution accuracy. Important conclusions are drawn from the numerical simulations. Future course of developments are highlighted.
Resumo:
The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.
Resumo:
This work intends to demonstrate the importance of geometrically nonlinear crosssectional analysis of certain composite beam-based four-bar mechanisms in predicting system dynamic characteristics. All component bars of the mechanism are made of fiber reinforced laminates and have thin rectangular cross-sections. They could, in general, be pre-twisted and/or possess initial curvature, either by design or by defect. They are linked to each other by means of revolute joints. We restrict ourselves to linear materials with small strains within each elastic body (beam). Each component of the mechanism is modeled as a beam based on geometrically nonlinear 3-D elasticity theory. The component problems are thus split into 2-D analyses of reference beam cross-sections and nonlinear 1-D analyses along the four beam reference curves. For thin rectangular cross-sections considered here, the 2-D cross-sectional nonlinearity is overwhelming. This can be perceived from the fact that such sections constitute a limiting case between thin-walled open and closed sections, thus inviting the nonlinear phenomena observed in both. The strong elastic couplings of anisotropic composite laminates complicate the model further. However, a powerful mathematical tool called the Variational Asymptotic Method (VAM) not only enables such a dimensional reduction, but also provides asymptotically correct analytical solutions to the nonlinear cross-sectional analysis. Such closed-form solutions are used here in conjunction with numerical techniques for the rest of the problem to predict multi-body dynamic responses, more quickly and accurately than would otherwise be possible. The analysis methodology can be viewed as a three-step procedure: First, the cross-sectional properties of each bar of the mechanism is determined analytically based on an asymptotic procedure, starting from Classical Laminated Shell Theory (CLST) and taking advantage of its thin strip geometry. Second, the dynamic response of the nonlinear, flexible fourbar mechanism is simulated by treating each bar as a 1-D beam, discretized using finite elements, and employing energy-preserving and -decaying time integration schemes for unconditional stability. Finally, local 3-D deformations and stresses in the entire system are recovered, based on the 1-D responses predicted in the previous step. With the model, tools and procedure in place, we shall attempt to identify and investigate a few problems where the cross-sectional nonlinearities are significant. This will be carried out by varying stacking sequences and material properties, and speculating on the dominating diagonal and coupling terms in the closed-form nonlinear beam stiffness matrix. Numerical examples will be presented and results from this analysis will be compared with those available in the literature, for linear cross-sectional analysis and isotropic materials as special cases.
Resumo:
Trajectory optimization of a generic launch vehicle is considered in this paper. The trajectory from launch point to terminal injection point is divided in to two segments. The first segment deals with launcher clearance and vertical raise of the vehicle. During this phase, a nonlinear feedback guidance loop is incorporated to assure vertical raise in presence of thrust misalignment, centre of gravity offset, wind disturbance etc. and possibly to clear obstacles as well. The second segment deals with the trajectory optimization, where the objective is to ensure desired terminal conditions as well as minimum control effort and minimum structural loading in the high dynamic pressure region. The usefulness of this dynamic optimization problem formulation is demonstrated by solving it using the classical Gradient method. Numerical results for both the segments are presented, which clearly brings out the potential advantages of the proposed approach.
Resumo:
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.
Resumo:
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a class of nonlinear problems, which leads to a closed form solution of the lateral acceleration (latax) history update. Guidance command assumed is the lateral acceleration (latax), applied normal to the velocity vector. The new guidance law is validated by considering the nonlinear kinematics with both lag-free as well as first order autopilot delay. The simulation results show that the proposed technique is quite promising to come up with a nonlinear guidance law that leads to both very small miss distance as well as the desired impact angle.
Resumo:
The topology optimization problem for the synthesis of compliant mechanisms has been formulated in many different ways in the last 15 years, but there is not yet a definitive formulation that is universally accepted. Furthermore, there are two unresolved issues in this problem. In this paper, we present a comparative study of five distinctly different formulations that are reported in the literature. Three benchmark examples are solved with these formulations using the same input and output specifications and the same numerical optimization algorithm. A total of 35 different synthesis examples are implemented. The examples are limited to desired instantaneous output direction for prescribed input force direction. Hence, this study is limited to linear elastic modeling with small deformations. Two design parameterizations, namely, the frame element based ground structure and the density approach using continuum elements, are used. The obtained designs are evaluated with all other objective functions and are compared with each other. The checkerboard patterns, point flexures, the ability to converge from an unbiased uniform initial guess, and the computation time are analyzed. Some observations are noted based on the extensive implementation done in this study. Complete details of the benchmark problems and the results are included. The computer codes related to this study are made available on the internet for ready access.
Resumo:
In this paper, we present a novel formulation for performing topology optimization of electrostatically actuated constrained elastic structures. We propose a new electrostatic-elastic formulation that uses the leaky capacitor model and material interpolation to define the material state at every point of a given design domain continuously between conductor and void states. The new formulation accurately captures the physical behavior when the material in between a conductor and a void is present during the iterative process of topology optimization. The method then uses the optimality criteria method to solve the optimization problem by iteratively pushing the state of the domain towards that of a conductor or a void in the appropriate regions. We present examples to illustrate the ability of the method in creating the stiffest structure under electrostatic force for different boundary conditions.
Resumo:
Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.