871 resultados para Nonlinear Threshold Systems
Resumo:
The conventional wisdom regarding party system fragmentation assumes that the effects of electoral systems and social cleavages are linear. However, recent work applying organizational ecology theories to the study of party systems has challenged the degree to which electoral system effects are linear. This paper applies such concepts to the study of social cleavages. Drawing from theories of organizational ecology and the experience of many ethnically diverse African party systems, I argue that the effects of ethnic diversity are nonlinear, with party system fragmentation increasing until reaching moderate levels of diversity before declining as diversity reaches extreme values. Examining this argument cross-nationally, the results show that accounting for nonlinearity in ethnic diversity effects significantly improves model fit.
Resumo:
The end of Dennard scaling has pushed power consumption into a first order concern for current systems, on par with performance. As a result, near-threshold voltage computing (NTVC) has been proposed as a potential means to tackle the limited cooling capacity of CMOS technology. Hardware operating in NTV consumes significantly less power, at the cost of lower frequency, and thus reduced performance, as well as increased error rates. In this paper, we investigate if a low-power systems-on-chip, consisting of ARM's asymmetric big.LITTLE technology, can be an alternative to conventional high performance multicore processors in terms of power/energy in an unreliable scenario. For our study, we use the Conjugate Gradient solver, an algorithm representative of the computations performed by a large range of scientific and engineering codes.
Resumo:
A novel model-based principal component analysis (PCA) method is proposed in this paper for wide-area power system monitoring, aiming to tackle one of the critical drawbacks of the conventional PCA, i.e. the incapability to handle non-Gaussian distributed variables. It is a significant extension of the original PCA method which has already shown to outperform traditional methods like rate-of-change-of-frequency (ROCOF). The ROCOF method is quick for processing local information, but its threshold is difficult to determine and nuisance tripping may easily occur. The proposed model-based PCA method uses a radial basis function neural network (RBFNN) model to handle the nonlinearity in the data set to solve the no-Gaussian issue, before the PCA method is used for islanding detection. To build an effective RBFNN model, this paper first uses a fast input selection method to remove insignificant neural inputs. Next, a heuristic optimization technique namely Teaching-Learning-Based-Optimization (TLBO) is adopted to tune the nonlinear parameters in the RBF neurons to build the optimized model. The novel RBFNN based PCA monitoring scheme is then employed for wide-area monitoring using the residuals between the model outputs and the real PMU measurements. Experimental results confirm the efficiency and effectiveness of the proposed method in monitoring a suite of process variables with different distribution characteristics, showing that the proposed RBFNN PCA method is a reliable scheme as an effective extension to the linear PCA method.
Resumo:
The end of Dennard scaling has promoted low power consumption into a firstorder concern for computing systems. However, conventional power conservation schemes such as voltage and frequency scaling are reaching their limits when used in performance-constrained environments. New technologies are required to break the power wall while sustaining performance on future processors. Low-power embedded processors and near-threshold voltage computing (NTVC) have been proposed as viable solutions to tackle the power wall in future computing systems. Unfortunately, these technologies may also compromise per-core performance and, in the case of NTVC, xreliability. These limitations would make them unsuitable for HPC systems and datacenters. In order to demonstrate that emerging low-power processing technologies can effectively replace conventional technologies, this study relies on ARM’s big.LITTLE processors as both an actual and emulation platform, and state-of-the-art implementations of the CG solver. For NTVC in particular, the paper describes how efficient algorithm-based fault tolerance schemes preserve the power and energy benefits of very low voltage operation.
Resumo:
This paper addresses the problem of infinite time performance of model predictive controllers applied to constrained nonlinear systems. The total performance is compared with a finite horizon optimal cost to reveal performance limits of closed-loop model predictive control systems. Based on the Principle of Optimality, an upper and a lower bound of the ratio between the total performance and the finite horizon optimal cost are obtained explicitly expressed by the optimization horizon. The results also illustrate, from viewpoint of performance, how model predictive controllers approaches to infinite optimal controllers as the optimization horizon increases.
Resumo:
The integration of an ever growing proportion of large scale distributed renewable generation has increased the probability of maloperation of the traditional RoCoF and vector shift relays. With reduced inertia due to non-synchronous penetration in a power grid, system wide disturbances have forced the utility industry to design advanced protection schemes to prevent system degradation and avoid cascading outages leading to widespread blackouts. This paper explores a novel adaptive nonlinear approach applied to islanding detection, based on wide area phase angle measurements. This is challenging, since the voltage phase angles from different locations exhibit not only strong nonlinear but also time-varying characteristics. The adaptive nonlinear technique, called moving window kernel principal component analysis is proposed to model the time-varying and nonlinear trends in the voltage phase angle data. The effectiveness of the technique is exemplified using both DigSilent simulated cases and real test cases recorded from the Great Britain and Ireland power systems by the OpenPMU project.
Resumo:
This paper presents initial results of evaluating suitability of the conventional two-tone CW passive intermodulation (PIM) test for characterization of modulated signal distortion by passive nonlinearities in base station antennas and RF front-end. A comprehensive analysis of analog and digitally modulated waveforms in the transmission lines with weak distributed nonlinearity has been performed using the harmonic balance analysis and X-parameters in Advanced Design System (ADS) simulator. The nonlinear distortion metrics used in the conventional two-tone CW PIM test have been compared with the respective spectral metrics applied to the modulated waveforms, such as adjacent channel power ratio (ACPR) and error vector magnitude (EVM). It is shown that the results of two-tone CW PIM tests are consistent with the metrics used for assessment of signal integrity of both analog and digitally modulated waveforms.
Resumo:
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Resumo:
Spectrum sensing is a key function of cognitive radio systems. Sensing performance is determined by three main factors including the wireless channel between the primary system and the cognitive radio nodes, the detection threshold, and the sensing time. In this letter a closed-form expression for the average probability of detection for energy detection based spectrum sensing over two-wave with diffuse power fading channels is derived. This expression is then used to optimize the detection threshold for cognitive radio nodes, which operate in confined structures that exhibit worse than Rayleigh fading conditions. Such fading conditions can represent a behavioral model of cognitive machine-to-machine systems deployed in enclosed structures such as in-vehicular environments.
Resumo:
Esta tese insere-se na área da simulação de circuitos de RF e microondas, e visa o estudo de ferramentas computacionais inovadoras que consigam simular, de forma eficiente, circuitos não lineares e muito heterogéneos, contendo uma estrutura combinada de blocos analógicos de RF e de banda base e blocos digitais, a operar em múltiplas escalas de tempo. Os métodos numéricos propostos nesta tese baseiam-se em estratégias multi-dimensionais, as quais usam múltiplas variáveis temporais definidas em domínios de tempo deformados e não deformados, para lidar, de forma eficaz, com as disparidades existentes entre as diversas escalas de tempo. De modo a poder tirar proveito dos diferentes ritmos de evolução temporal existentes entre correntes e tensões com variação muito rápida (variáveis de estado activas) e correntes e tensões com variação lenta (variáveis de estado latentes), são utilizadas algumas técnicas numéricas avançadas para operar dentro dos espaços multi-dimensionais, como, por exemplo, os algoritmos multi-ritmo de Runge-Kutta, ou o método das linhas. São também apresentadas algumas estratégias de partição dos circuitos, as quais permitem dividir um circuito em sub-circuitos de uma forma completamente automática, em função dos ritmos de evolução das suas variáveis de estado. Para problemas acentuadamente não lineares, são propostos vários métodos inovadores de simulação a operar estritamente no domínio do tempo. Para problemas com não linearidades moderadas é proposto um novo método híbrido frequência-tempo, baseado numa combinação entre a integração passo a passo unidimensional e o método seguidor de envolvente com balanço harmónico. O desempenho dos métodos é testado na simulação de alguns exemplos ilustrativos, com resultados bastante promissores. Uma análise comparativa entre os métodos agora propostos e os métodos actualmente existentes para simulação RF, revela ganhos consideráveis em termos de rapidez de computação.
Resumo:
A dissertação de doutoramento apresentada insere-se na área de electrónica não-linear de rádio-frequência (RF), UHF e microondas, tendo como principal campo de acção o estudo da distorção nãolinear em arquitecturas de recepção rádio, nomeadamente receptores de conversão directa como Power Meters, RFID (Radio Frequency IDentification) ou SDR (Software Define Radio) front-ends. Partindo de um estudo exaustivo das actuais arquitecturas de recepção de radiofrequência e revendo todos os conceitos teóricos relacionados com o desempenho não-linear dos sistemas/componentes electrónicos, foram desenvolvidos algoritmos matemáticos de modulação dos comportamentos não-lineares destas arquitecturas, simulados e testados em laboratório e propostas novas arquitecturas para a minimização ou cancelamento do impacto negativo de grandes interferidores em frequências vizinhas ao do sistema pretendido.
Resumo:
O tema principal desta tese é o problema de cancelamento de interferência para sistemas multi-utilizador, com antenas distribuídas. Como tal, ao iniciar, uma visão geral das principais propriedades de um sistema de antenas distribuídas é apresentada. Esta descrição inclui o estudo analítico do impacto da ligação, dos utilizadores do sistema, a mais antenas distribuídas. Durante essa análise é demonstrado que a propriedade mais importante do sistema para obtenção do ganho máximo, através da ligação de mais antenas de transmissão, é a simetria espacial e que os utilizadores nas fronteiras das células são os mais bene ciados. Tais resultados são comprovados através de simulação. O problema de cancelamento de interferência multi-utilizador é considerado tanto para o caso unidimensional (i.e. sem codi cação) como para o multidimensional (i.e. com codi cação). Para o caso unidimensional um algoritmo de pré-codi cação não-linear é proposto e avaliado, tendo como objectivo a minimização da taxa de erro de bit. Tanto o caso de portadora única como o de multipla-portadora são abordados, bem como o cenário de antenas colocadas e distribuidas. É demonstrado que o esquema proposto pode ser visto como uma extensão do bem conhecido esquema de zeros forçados, cuja desempenho é provado ser um limite inferior para o esquema generalizado. O algoritmo é avaliado, para diferentes cenários, através de simulação, a qual indica desempenho perto do óptimo, com baixa complexidade. Para o caso multi-dimensional um esquema para efectuar "dirty paper coding" binário, tendo como base códigos de dupla camada é proposto. No desenvolvimento deste esquema, a compressão com perdas de informação, é considerada como um subproblema. Resultados de simulação indicam transmissão dedigna proxima do limite de Shannon.
Resumo:
The aim of this chapter is to introduce background concepts in nonlinear systems identification and control with artificial neural networks. As this chapter is just an overview, with a limited page space, only the basic ideas will be explained here. The reader is encouraged, for a more detailed explanation of a specific topic of interest, to consult the references given throughout the text. Additionally, as general books in the field of neural networks, the books by Haykin [1] and Principe et al. [2] are suggested. Regarding nonlinear systems identification, covering both classical and neural and neuro-fuzzy methodologies, Reference 3 is recommended. References 4 and 5 should be used in the context of B-spline networks.
Resumo:
Complete supervised training algorithms for B-spline neural networks and fuzzy rule-based systems are discussed. By interducing the relationship between B-spline neural networks and certain types of fuzzy models, training algorithms developed initially for neural networks can be adapted by fuzzy systems.
Resumo:
Multilayer perceptrons (MLPs) (1) are the most common artificial neural networks employed in a large field of applications. In control and signal processing applications, MLPs are mainly used as nonlinear mapping approximators. The most common training algorithm used with MLPs is the error back-propagation (BP) alg. (1).