979 resultados para Non-dispersive infrared sensor (NDIR)
Resumo:
Spectrally modulated Airy-based pulses peak amplitude modulation (PAM) in linear dispersive media is investigated, designed, and numerically simulated. As it is shown here, it is possible to design the spectral modulation of the initial Airy-based pulses to obtain a pre-defined PAM profile as the pulse propagates. Although optical pulses self-amplitude modulation is a well-known effect under non-linear propagation, the designed Airy-based pulses exhibit PAM under linear dispersive propagation. This extraordinary linear propagation property can be applied in many kinds of dispersive media, enabling its use in a broad range of experiments and applications. © 2013 Optical Society of America.
Resumo:
MSC 2010: 05C50, 15A03, 15A06, 65K05, 90C08, 90C35
Resumo:
Energy efficiency is one of the most important performances of a wireless sensor network. In this paper, we show that choosing a proper transmission scheme given the channel and network conditions can ensure a high energy performance in different transmission environments. Based on the energy models we established for both cooperative and non-cooperative communications, the efficiency in terms of energy consumption per bit for different transmission schemes is investigated. It is shown that cooperative transmission schemes can outperform non-cooperative schemes in energy efficiency in severe channel conditions and when the source-destination distance is in a medium or long range. But the latter is more energy efficient than the former for short-range transmission. For cooperative transmission schemes, the number of transmission branches and the number of relays per branch can also be properly selected to adapt to the variations of the transmission environment, so that the total energy consumption can be minimized.
Resumo:
Non-invasive ventilation performed through an oronasal mask is a standard in clinical and homecare mechanical ventilation. Besides all its advantages, inevitable leaks through the mask cause errors in the feedback information provided by the airflow sensor and, hence, patient-ventilator asynchrony with multiple negative consequences. Here we investigate a new way to provide a trigger to the ventilator. The method is based on the measurement of rib cage movement at the onset of inspiration and during breathing by fibre-optic sensors. In a series of simultaneous measurements by a long-period fibre grating sensor and pneumotachograph we provide the statistical evidence of the 200 ms lag of the pneumo with respect the fibre-optic signal. The lag is registered consistently across three independent delay metrics. Further, we discuss exceptions from this trend and identify the needed improvements to the proposed fibre-sensing scheme.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
Near infrared spectroscopy (NIRS) is an emerging non-invasive optical neuro imaging technique that monitors the hemodynamic response to brain activation with ms-scale temporal resolution and sub-cm spatial resolution. The overall goal of my dissertation was to develop and apply NIRS towards investigation of neurological response to language, joint attention and planning and execution of motor skills in healthy adults. Language studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal and fronto-temporal cortex of healthy adults in response to language reception and expression. The mathematical model developed based on granger causality explicated the directional flow of information during the processing of language stimuli by the fronto-temporal cortex. Joint attention and planning/ execution of motor skill studies were performed to investigate the hemodynamic response, synchrony and dominance feature of the frontal cortex of healthy adults and in children (5-8 years old) with autism (for joint attention studies) and individuals with cerebral palsy (for planning/execution of motor skills studies). The joint attention studies on healthy adults showed differences in activation as well as intensity and phase dependent connectivity in the frontal cortex during joint attention in comparison to rest. The joint attention studies on typically developing children showed differences in frontal cortical activation in comparison to that in children with autism. The planning and execution of motor skills studies on healthy adults and individuals with cerebral palsy (CP) showed difference in the frontal cortical dominance, that is, bilateral and ipsilateral dominance, respectively. The planning and execution of motor skills studies also demonstrated the plastic and learning behavior of brain wherein correlation was found between the relative change in total hemoglobin in the frontal cortex and the kinematics of the activity performed by the participants. Thus, during my dissertation the NIRS neuroimaging technique was successfully implemented to investigate the neurological response of language, joint attention and planning and execution of motor skills in healthy adults as well as preliminarily on children with autism and individuals with cerebral palsy. These NIRS studies have long-term potential for the design of early stage interventions in children with autism and customized rehabilitation in individuals with cerebral palsy.
Resumo:
Ensemble Stream Modeling and Data-cleaning are sensor information processing systems have different training and testing methods by which their goals are cross-validated. This research examines a mechanism, which seeks to extract novel patterns by generating ensembles from data. The main goal of label-less stream processing is to process the sensed events to eliminate the noises that are uncorrelated, and choose the most likely model without over fitting thus obtaining higher model confidence. Higher quality streams can be realized by combining many short streams into an ensemble which has the desired quality. The framework for the investigation is an existing data mining tool. First, to accommodate feature extraction such as a bush or natural forest-fire event we make an assumption of the burnt area (BA*), sensed ground truth as our target variable obtained from logs. Even though this is an obvious model choice the results are disappointing. The reasons for this are two: One, the histogram of fire activity is highly skewed. Two, the measured sensor parameters are highly correlated. Since using non descriptive features does not yield good results, we resort to temporal features. By doing so we carefully eliminate the averaging effects; the resulting histogram is more satisfactory and conceptual knowledge is learned from sensor streams. Second is the process of feature induction by cross-validating attributes with single or multi-target variables to minimize training error. We use F-measure score, which combines precision and accuracy to determine the false alarm rate of fire events. The multi-target data-cleaning trees use information purity of the target leaf-nodes to learn higher order features. A sensitive variance measure such as ƒ-test is performed during each node's split to select the best attribute. Ensemble stream model approach proved to improve when using complicated features with a simpler tree classifier. The ensemble framework for data-cleaning and the enhancements to quantify quality of fitness (30% spatial, 10% temporal, and 90% mobility reduction) of sensor led to the formation of streams for sensor-enabled applications. Which further motivates the novelty of stream quality labeling and its importance in solving vast amounts of real-time mobile streams generated today.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
According to the American Podiatric Medical Association, about 15 percent of the patients with diabetes would develop a diabetic foot ulcer. Furthermore, foot ulcerations leads to 85 percent of the diabetes-related amputations. Foot ulcers are caused due to a combination of factors, such as lack of feeling in the foot, poor circulation, foot deformities and the duration of the diabetes. To date, the wounds are inspected visually to monitor the wound healing, without any objective imaging approach to look before the wound’s surface. Herein, a non-contact, portable handheld optical device was developed at the Optical Imaging Laboratory as an objective approach to monitor wound healing in foot ulcer. This near-infrared optical technology is non-radiative, safe and fast in imaging large wounds on patients. The FIU IRB-approved study will involve subjects that have been diagnosed with diabetes by a physician and who have developed foot ulcers. Currently, in-vivo imaging studies are carried out every week on diabetic patients with foot ulcers at two clinical sites in Miami. Near-infrared images of the wound are captured on subjects every week and the data is processed using customdeveloped Matlab-based image processing tools. The optical contrast of the wound to its peripheries and the wound size are analyzed and compared from the NIR and white light images during the weekly systematic imaging of wound healing.
Resumo:
Caffeine is the most consumed psychostimulant, with effects on attention, memory, and arousal. But when this substance is ingested near to bedtime there is a decrease on sleep, interfering on mnemonic processes. So, our ain was to investigate how the caffeine ingested near to sleep onset acts on sleep and memory in marmosets. We used 16 adult marmosets, single housed, in a 12:12h light-dark cycle. For registering locomotor activity were used two kinds of sensors. The gyroscope sensor registers activity each 30 sec and detects motion with good accuracy. Because of this we used this sensor for detecting nocturnal activity. The second sensor was based on infrared and accumulates activity each 5 min and it’s not able to detect nocturnal activity, just diurnal activity. We also used camera for registering Rest phase of one marmoset. For the cognitive task, the animals needed to learn a rewarded context (CR) when compared to a non-rewarded context CNR). This experiment comprises 5 phases: 1) Two days of habituation to apparatus; 2)Training for 8 days; 3) oral administration of caffeine (10 mg/kg) or placebo administration ±1h before sleep onset, for 8 days, with marmosets receiving placebo or caffeine; 4) retraining to apparatus and after that, placebo administration (placebo group-GP), or caffeine administration (with continuous group-GC and acute groupGA); 5) Test, for evaluating learning to CR. The sessions were filmed and each one had 8 min of duration. At 7 am started the habituation, training and test sessions, and at 3:15 pm started retraining. The results for gyroscope sensor showed that there was coincidence of 68,57% with nocturnal register of the cameras. Then, the gyroscope sensors detected nocturnal activity for all experimental groups Moreover, when compared sensor gyroscope with sensor based on infrared, was observed that both sensor presented similarity on patterns of activity curve. When we observed the effects of caffeine on Activity-Rest Cycle in GP, GA and GC, is possible to see that that gyroscope sensors and based on infrared presented only intra group differences. As behavioral results, the marmosets learned to discriminate CR when compared to CNR. Moreover, GP presented deficits on memory recall during the test, and GA increased the memory recall, when both were compared to GP. We concluded that the marmosets were able to learning the cognitive task and that the caffeine ingested near to sleep onset acts modulating memory in these animals. Moreover the gyroscope sensor can be used as alternative tool for investigating nocturnal activity. Then, the utilization of this non-invasive device allows marmosets exhibit their behavior within the laboratory conditions as natural as possible.
Resumo:
This thesis stems from the project with real-time environmental monitoring company EMSAT Corporation. They were looking for methods to automatically ag spikes and other anomalies in their environmental sensor data streams. The problem presents several challenges: near real-time anomaly detection, absence of labeled data and time-changing data streams. Here, we address this problem using both a statistical parametric approach as well as a non-parametric approach like Kernel Density Estimation (KDE). The main contribution of this thesis is extending the KDE to work more effectively for evolving data streams, particularly in presence of concept drift. To address that, we have developed a framework for integrating Adaptive Windowing (ADWIN) change detection algorithm with KDE. We have tested this approach on several real world data sets and received positive feedback from our industry collaborator. Some results appearing in this thesis have been presented at ECML PKDD 2015 Doctoral Consortium.
Resumo:
Cooperative communication has gained much interest due to its ability to exploit the broadcasting nature of the wireless medium to mitigate multipath fading. There has been considerable amount of research on how cooperative transmission can improve the performance of the network by focusing on the physical layer issues. During the past few years, the researchers have started to take into consideration cooperative transmission in routing and there has been a growing interest in designing and evaluating cooperative routing protocols. Most of the existing cooperative routing algorithms are designed to reduce the energy consumption; however, packet collision minimization using cooperative routing has not been addressed yet. This dissertation presents an optimization framework to minimize collision probability using cooperative routing in wireless sensor networks. More specifically, we develop a mathematical model and formulate the problem as a large-scale Mixed Integer Non-Linear Programming problem. We also propose a solution based on the branch and bound algorithm augmented with reducing the search space (branch and bound space reduction). The proposed strategy builds up the optimal routes from each source to the sink node by providing the best set of hops in each route, the best set of relays, and the optimal power allocation for the cooperative transmission links. To reduce the computational complexity, we propose two near optimal cooperative routing algorithms. In the first near optimal algorithm, we solve the problem by decoupling the optimal power allocation scheme from optimal route selection. Therefore, the problem is formulated by an Integer Non-Linear Programming, which is solved using a branch and bound space reduced method. In the second near optimal algorithm, the cooperative routing problem is solved by decoupling the transmission power and the relay node se- lection from the route selection. After solving the routing problems, the power allocation is applied in the selected route. Simulation results show the algorithms can significantly reduce the collision probability compared with existing cooperative routing schemes.
Seawater carbonate chemistry during a Ishigaki Island (Japan) coral reef seasonal observations, 2005
Resumo:
Monitoring seawater CO2 for a full year with seasonal observations of community metabolism in Ishigaki Island, Japan, revealed seasonal variation and anomalous values owing to the bleaching event in 1998. The daily average pCO2 showed a seasonal pattern on an annual scale, 280 to 320 ?atm in winter and 360 to 400 ?atm in summer, which was determined primarily by the seasonal change in seawater temperature. By contrast, the range in the diel variation in pCO2, 400 to 500 ?atm in summer 200 to 300 ?atm in winter, was attributed to the seasonal variation in community metabolism: Gross primary production (P g ) and respiration (R) were high in summer and low in winter. During the 1998 bleaching event, although P g and R increased, community excess organic production (E) decreased by three quarters compared with the same month in 1999, when the coral community showed high recovery. This change in metabolism led to large diel range and increased average value of pCO2 levels in the seawater on the reef flat. The decrease in the range and increase in the average value of pCO2 were observed by monitoring the Palau barrier reef flat, where overall mortality of corals occurred after the bleaching. All the metabolic parameters, P g , R, E and calcification (G) were reduced by half after the bleaching, which increased the average pCO2 value by 10 ?atm and decreased its diel range from 200-400 ?atm to 100-200 ?atm. Bleaching and resultant mortality of coral reefs led to degradation of their metabolic performance, and thus resulted in the loss of their active interaction with the carbon cycle.