963 resultados para Niobium phosphates
Resumo:
One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)
Resumo:
Phosphate release kinetics in soils are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Dissolution of phosphate-containing minerals induced by a changing rhizosphere equilibrium through proton input is one important mechanism that releases phosphate into bioavailable forms. Our objectives were (i) to determine phosphate release kinetics during H+ addition in calcareous soils of the Schwäbische Alb, Germany, and to assess the influence of (ii) land-use type (grassland vs. forest) and (iii) management intensity on reactive phosphate pools and phosphate release rate constants during H+ addition. Phosphate release kinetics were characterized by a large fast-reacting phosphatepool, which could be attributed to poorly-crystalline calcium phosphates, and a small slow-reacting phosphate pool probably originating from carbonate-bearing hydroxylapatite. Both reactive phosphate pools—as well as total phosphate concentrations (TP) in soil—were greater in grassland than in forest soils. In organically fertilized grassland soils, concentrations of released phosphate were higher than in unfertilized soils, likely because organic fertilizers contain poorly-crystalline phosphate compounds which are further converted into sparingly soluble phosphate forms. Because of an enriched slow-reacting phosphate pool, mown pastures were characterized by a more continuous slow phosphate release reaction in contrast to clear biphasic phosphate release patterns in meadows. Consequently, managing phosphate release kinetics via management measures is a valuable tool to evaluate longer-term P availability in soil in the context of finite rock phosphate reserves on earth.
Resumo:
Chondrites are among the most primitive objects in the Solar System and constitute the main building blocks of telluric planets. Among the radiochronometers currently used for dating geological events, Sm–Nd and Lu–Hf are both composed of refractory, lithophile element. They are thought to behave similarly as the parent elements (Sm and Lu) are generally less incompatible than the daughter elements (Nd and Hf) during geological processes. As such, their respective average isotopic compositions for the solar system should be well defined by the average of chondrites, called Chondritic Uniform Reservoir (CHUR). However, while the Sm–Nd isotopic system shows an actual spread of less than 4% in the average chondritic record, the Lu–Hf system shows a larger variation range of 28% [Bouvier A., Vervoort J. D. and Patchett P. J. (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett.273, 48–57]. To better understand the contrast between Sm–Nd and Lu–Hf systems, the REE and Hf distribution among mineral phases during metamorphism of Karoonda (CK) and Vigarano-type (CV) carbonaceous chondrites has been examined. Mineral modes were determined from elemental mapping on a set of five CK chondrites (from types 3–6) and one CV3 chondrite. Trace-element patterns are obtained for the first time in all the chondrite-forming minerals of a given class (CK chondrites) as well as one CV3 sample. This study reveals that REE are distributed among both phosphates and silicates. Only 30–50% of Sm and Nd are stored in phosphates (at least in chondrites types 3–5); as such, they are not mobilized during early stages of metamorphism. The remaining fraction of Sm and Nd is distributed among the same mineral phases; these elements are therefore not decoupled during metamorphism. Of the whole-rock total of Lu, the fraction held in phosphate decreases significantly as the degree of metamorphism increases (30% for types 3 and 4, less than 5% in type 6). In contrast to Lu, Hf is mainly hosted by silicates with little contribution from phosphates throughout the CK metamorphic sequence. A significant part of Sm and Nd are stored in phosphates in types 3–5, and these elements behave similarly during CK chondrite metamorphism. That explains the robustness of the Sm/Nd ratios in chondrites through metamorphism, and the slight discrepancies observed in the present-day isotopic Nd values in chondrites. On the contrary, Lu and Hf are borne by several different minerals and consequently they are redistributed during metamorphism–induced recrystallization. The Lu/Hf ratios are therefore significantly disturbed during chondrites metamorphism, leading to the high discrepancies observed in present-day Hf isotopic values in chondrites.
Resumo:
Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.
Resumo:
Very important aspects of the modern nanotechnology are control and prediction of arraying patterns of opto- and electroactive molecules in discrete objects on nanoscale level both on surface and solution. Consequqntly, a self-assembly of small molucules provides such an opportunity.For example, oligopyrenotides (OPs, short amphiphilic pyrene oligomers) represent a novel class of amphiphilic molecules which tend to aggegate in aqueous phase. As has been already shown, OPs are able to form 1D supramolecular polymer only under high salt concentration. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that substitution type of the pyrene is crutial, and it determines a morphology of the assemblies. Thus, a 1.6-linkage causes a formation of large, free-standing 2D supromolecular polymers with a thickness 2 nm. These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long (up to a few micrometer), nanometer thick helical supramolecular polymers. These structures tend to form even more complex structures (bundles, superhelixes). Moreover for both molecules, the polymerizations occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).
Resumo:
Herein we demonstrate that a substitution type of the pyrene in short amphiphilic oligomers determines a morphology of the assemblies formed. Thus, 1.6- and 2.7-linkages lead to a formation of micrometer-sized 2D supromolecular polymers with a constant thickness 2 nm (pictures A and B). These assemblies possess a high degree of an internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic negatively charged phosphates. Contrary, a 1.8-linkage exclusiveley leads to a formation of long nanometer thick helical supramolecular polymers (picturee C). These structures tend to form even more complex assemblies (bundles, superhelixes). Moreover, for all samples the polymerization process occurs via a nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM).
Resumo:
The effectiveness of fluoride in caries prevention has been convincingly proven. In recent years, researchers have investigated the preventive effects of different fluoride formulations on erosive tooth wear with positive results, but their action on caries and erosion prevention must be based on different requirements, because there is no sheltered area in the erosive process as there is in the subsurface carious lesions. Thus, any protective mechanism from fluoride concerning erosion is limited to the surface or the near surface layer of enamel. However, reports on other protective agents show superior preventive results. The mechanism of action of tin-containing products is related to tin deposition onto the tooth surface, as well as the incorporation of tin into the near-surface layer of enamel. These tin-rich deposits are less susceptible to dissolution and may result in enhanced protection of the underlying tooth. Titanium tetrafluoride forms a protective layer on the tooth surface. It is believed that this layer is made up of hydrated hydrogen titanium phosphate. Products containing phosphates and/or proteins may adsorb either to the pellicle, rendering it more protective against demineralization, or directly to the dental hard tissue, probably competing with H(+) at specific sites on the tooth surface. Other substances may further enhance precipitation of calcium phosphates on the enamel surface, protecting it from additional acid impacts. Hence, the future of fluoride alone in erosion prevention looks grim, but the combination of fluoride with protective agents, such as polyvalent metal ions and some polymers, has much brighter prospects.
Resumo:
Electron-microprobe analysis, single-crystal X-ray diffraction with an area detector, and high-resolution transmission electron microscopy show that minerals related to wagnerite, triplite and triploidite, which are monoclinic Mg, Fe and Mn phosphates with the formula Me2+ 2PO4(F,OH), constitute a modulated series based on the average triplite structure. Modulation occurs along b and may be commensurate with (2b periodicity) or incommensurate but generally close to integer values (∼3b, ∼5b, ∼7b, ∼9b), i.e. close to polytypic behaviour. As a result, the Mg- and F-dominant minerals magniotriplite and wagnerite can no longer be considered polymorphs of Mg2PO4F, i.e., there is no basis for recognizing them as distinct species. Given that wagnerite has priority (1821 vs. 1951), the name magniotriplite should be discarded in favour of wagnerite. Hydroxylwagnerite, end-member Mg2PO4OH, occurs in pyrope megablasts along with talc, clinochlore, kyanite, rutile and secondary apatite in two samples from lenses of pyrope–kyanite–phengite–quartz-schist within metagranite in the coesite-bearing ultrahigh-pressure metamorphic unit of the Dora-Maira Massif, western Alps, Vallone di Gilba, Val Varaita, Piemonte, Italy. Electron microprobe analyses of holotype hydroxylwagnerite and of the crystal with the lowest F content gave in wt%: P2O5 44.14, 43.99; SiO2 0.28, 0.02; SO3 –, 0.01; TiO2 0.20, 0.16; Al2O3 0.06, 0.03; MgO 48.82, 49.12; FeO 0.33, 0.48; MnO 0.01, 0.02; CaO 0.12, 0.10; Na2O 0.01, –; F 5.58, 4.67; H2O (calc) 2.94, 3.36; –O = F 2.35, 1.97; Sum 100.14, 99.98, corresponding to (Mg1.954Fe0.007Ca0.003Ti0.004Al0.002Na0.001)Σ=1.971(P1.003Si0.008)Σ=1.011O4(OH0.526F0.474)Σ=1 and (Mg1.971Fe0.011Ca0.003Ti0.003Al0.001)Σ=1.989(P1.002Si0.001)Σ=1.003O4(OH0.603F0.397)Σ=1, respectively. Due to the paucity of material, H2O could not be measured, so OH was calculated from the deficit in F assuming stoichiometry, i.e., by assuming F + OH = 1 per formula unit. Holotype hydroxylwagnerite is optically biaxial (+), α 1.584(1), β 1.586(1), γ 1.587(1) (589 nm); 2V Z(meas.) = 43(2)°; orientation Y = b. Single-crystal X-ray diffraction gives monoclinic symmetry, space group P21/c, a = 9.646(3) Å, b = 12.7314(16) Å, c = 11.980(4) Å, β = 108.38(4) , V = 1396.2(8) Å3, Z = 16, i.e., hydroxylwagnerite is the OH-dominant analogue of wagnerite [β-Mg2PO4(OH)] and a high-pressure polymorph of althausite, holtedahlite, and α- and ε-Mg2PO4(OH). We suggest that the group of minerals related to wagnerite, triplite and triploidite constitutes a triplite–triploidite super-group that can be divided into F-dominant phosphates (triplite group), OH-dominant phosphates (triploidite group), O-dominant phosphates (staněkite group) and an OH-dominant arsenate (sarkinite). The distinction among the three groups and a potential fourth group is based only on chemical features, i.e., occupancy of anion or cation sites. The structures of these minerals are all based on the average triplite structure, with a modulation controlled by the ratio of Mg, Fe2+, Fe3+ and Mn2+ ionic radii to (O,OH,F) ionic radii.
Resumo:
The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.
Resumo:
The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.
Resumo:
Rutile (TiO2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 degrees C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 degrees C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 degrees C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 degrees C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 degrees C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 degrees C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 degrees C at >= 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.
Resumo:
Cancer is one of the most severe and widespread diseases and an ideal treatment has not yet been found. In the last decades, cisplatinum was commonly applied in cancer therapy with very good results. However, serious side effects and resistant tumors necessitated the development of new antineoplastic agents, such as metallocenes dihalides. These are metal-based compounds exhibiting two cyclopentadienyl ligands and a cis-dihalide motif. They resemble the cis-chloro configuration of cisplatinum, which propounds a similar mode of action. Metallocenes comprising one of the transition metals titanium, molybdenum, vanadium, niobium, and zirconium as the metal center have been shown to be effective against several cancer cell lines. Evidence for the accumulation of metallocenes in the nucleus implied that DNA is one of the major targets. Although several studies reported adduct formation of metallocenes with nuclear DNA, as yet substantial information about the general binding pattern and the binding to higher-order structures is lacking. Mass spectrometry can fill this gap as it constitutes a powerful technique to investigate the formation of organometallic adducts. Presented data demonstrate that the two agents titanocene dichloride and molybdenocene dichloride bind to single-stranded DNA and RNA. Distinct fragment ions formed upon collision-induced dissociation help to unravel preferential binding sites within the oligonucleotides. Moreover, adducts with duplexes and quadruplexes shed light on the molecular mechanism of action.
Resumo:
The Departmento de Arica in northern Chile was chosen as the investigation site for a study of the role of certain hematologic and glycolytic variables in the physiological and genetic adaptation to hypoxia.^ The population studied comprised 876 individuals, residents of seven villages at three altitudes: coast (0-500m), sierra (2,500-3,500m) and altiplano (> 4,000m). There was an equal number of males and females ranging in ages from six to 90 years. Although predominantly Aymara, those of mixed or Spanish origin were also examined. The specimens were collected in heparinized vacutainers precipitated with cold trichloroacetic acid (TCA) and immediately frozen to -196(DEGREES)C. Six variables were measured. Three were hematologic: hemoglobin, hematocrit and mean cell hemoglobin concentration. The three others were glycolytic: erythrocyte 2,3-diphosphoglycerate (DPG), adenosine triphosphate (ATP) and the percentage of phosphates (DPG + ATP) in the form of DPG.^ Hemoglobin and hematocrit were measured on site. The DPG and ATP content was assayed in specimens which had been frozen at -196(DEGREES)C and transported to Houston. Structured interviews on site provided information as to lifestyle and family pedigrees.^ The following results were obtained: (1) The actual village, rather than the altitude, of examination accounted for the greatest proportion of the variance in all variables. In the coast, a large difference in levels of ionic lithium in the drinking water exists. The chemical environment of food and drink is postulated to account, in part, for the importance of geographic location in explaining the observed variance. (2) Measurements of individuals from the two extreme altitudes, coast and altiplano, did not exhibit the same relationship with age and body mass. The hematologic variables were significantly related to both age and body build in the coast. The glycolytic variables were significantly related to age and body mass in the altiplano. (3) The environment modified male values more than female values in all variables. The two sexes responded quite differently to age and changes in body mass as well. The question of differing adaptability of the two sexes is discussed. (4) Environmental factors explained a significantly higher proportion of total variability in the altiplano than in the coast for hemoglobin, hematocrit and DPG. Most of the ATP variability at both altitudes is explained by genetic factors. ^
Resumo:
This study was conducted by either literature review or actual field survey. Results are summarized as follows: (1) Long-term occupational exposure of workers to benzene vapor at levels of 3-7 ppm, 2-3 ppm and 1.6 ppm may result in a decreased level of leucocyte alkaline phosphates, an increased incidence of chromosome aberrations and an increased level of ALA in erythrocytes, respectively; (2) Benzene is capable of causing fetotoxic effects in animals at levels as low as 10 ppm by volume; (3) Exposure of animals to or less than 1 ppm benzene vapor may result in leucopenia, an inverse ratio of muscle antagonist chronaxy and a decreased level of ascorbic acid in fetus's and mother's liver as well as whole embryo; (4) Benzene is causally associated with the increased incidence of pancytopenia, including unicytopenia, bicytopenia and aplastic anemia, and chromosome aberrations in occupational exposure population, and at best benzene must also be considered as a leukemogen; (5) Since it can be emitted into the atmosphere from both man-made and natural sources, benzene in some concentrations is present everywhere in the various compartments of the environment; (6) The findings of the emission of benzene from certain natural sources indicate that reducing benzene to a zero-level of exposure is theoretically impossible; (7) The annual average of benzene concentration detected in the Houston ambient air is 2.50 ppb, which is about 2.4 times higher than the nation-wide annual average exposure level and may have been some health implications to the general public; (8) In the Houston area, stationary sources are more important than mobile sources in contributing to benzene in the ambient air. ^
Resumo:
A total of 167 samples distubuted throughout the CRP-3 drillhole from 5.77 to 787.68 mbsf and representing fine to coarse sandstones have been analysed by X-ray fluorescence spectrometry (XRF) Bulk sample geochemistry (major and trace elements) indicates a dominant provenance of detritus from the Ferrar Supergroup in the uppermost 200 mbsf of the core. A markedly increased contribution from the Beacon sandstones is recognized below 200 mbsf and down to 600 mbsf. In the lower part of CRP-3, down to 787.68 mbsf, geochemical evidence for influxes of Ferrar materials is again recorded. On the basis of preliminary magnetostratigraphic data reported for the lower 447 mbsf of the drillhole, we tentatively evaluated the main periodicities modulating the geochemical records. Our results identify a possible influence of the precession, obliquity and long-eccentricity astronomical components (21, 41, and 400 ky frequency bands) on the deposition mechanisms of the studied glaciomarine sediments.