977 resultados para New Jersey Coastal Heritage Trail (N.J.)--Maps, Tourist.
Resumo:
Attention was focused on the Monk Parakeet (Myiopsitta monachus) in New York State in 1971 when the first successful breeding record was documented for the state although Monk Parakeets had been noticed in New York and New Jersey since 1968 (Bull, 1971). Since 1971 awareness of the bird’s potential for becoming an established species in New York has spread through several segments of the state’s populace. This awareness has been created primarily through two articles in the magazine published by the New York State Department of Environmental Conservation (DEC), The Conservationist (Trimm, 1972) (Trimm, 1973); several articles in popular magazines, Parade, Yankee, Sports Afield; journals, American Birds and Kingbird; county cooperative extension bulletins and newsletters; and in numerous newspapers throughout the Northeast. The Monk Parakeet is about 12 inches long (Mourning Dove size), weighs about 90 grams, and is native to Argentina and other temperate regions of South America. The bird is pale green with a soft gray forehead and breast, some blue on the flight feathers and a flesh-colored bill. They are gregarious throughout the year. The Monk Parakeet differs from other members of the parrot family in that it builds large communal nests of sticks. Each pair of parakeets has its own private compartment with a downward-pointing tunnel entrance from the inner unlined compartment. The nest is used as sleeping quarters year round and live twigs cut by the bird are continually added to the structure (Bump, 1971). A brief review of the bird’s history in New York shows that the bird remained a mere curiosity until 1972. At that time, because the population seemed to be increasing and because information gleaned from the literature and from those with first-hand experience with the bird in its native haunts of South America indicated that the bird posed a serious potential agricultural problem, several prominent individuals, birding and conservation societies, and state and federal agencies took the position that the bird should be retrieved or removed from the wild.
Resumo:
The presence of hundreds of rectangular and oriented lakes is one of the most striking characteristics of the Llanos de Moxos (LM) landscape in the Bolivian Amazon. Oriented lakes also occur in the Arctic coastal plains of Russia, Alaska and Canada and along the Atlantic Coastal Plain from northeast Florida to southeast New Jersey and along the coast of northeast Brazil. Many different mechanisms have been proposed for their formation. In the LM, Plafker's (1964) tectonic model, in which subsidence results from the propagation of bedrock faults through the foreland sediments, is the most accepted. However, this model has not been verified. Here, we present new results from stratigraphic transects across the borders of three rectangular and oriented lakes in the LM. A paleosol buried under mid-Holocene sediments is used as a stratigraphic marker to assess the vertical displacement of sediments on both sides of the alleged faults. Our results show that there is no vertical displacement and, therefore, that Plafker's model can be ruled out. We suggest that, among all the proposed mechanisms behind lake formation, the combined action of wind and waves is the most likely. The evidence from the LM provides new hints for the formation of oriented lakes worldwide.
Resumo:
On the basis of lithologic, foraminiferal, seismostratigraphic, and downhole logging characteristics, we identified seven distinctive erosional unconformities at the contacts of the principal depositional sequences at Site 612 on the New Jersey Continental Slope (water depth 1404 m). These unconformities are present at the Campanian/Maestrichtian, lower Eocene/middle Eocene, middle Eocene/upper Eocene, upper Eocene/lower Oligocene, lower Oligocene/upper Miocene, Tortonian/Messinian, and upper Pliocene/upper Pleistocene contacts. The presence of coarse sand or redeposited intraclasts above six of the unconformities suggests downslope transport from the adjacent shelf by means of sediment gravity flows, which contributed in part to the erosion. Changes in the benthic foraminiferal assemblages across all but the Campanian/Maestrichtian contact indicate that significant changes in the seafloor environment, such as temperature and dissolved oxygen content, took place during the hiatuses. Comparison with modern analogous assemblages and application of a paleoslope model where possible, indicate that deposition took place in bathyal depths throughout the Late Cretaceous and Cenozoic at Site 612. An analysis of two-dimensional geometry and seismic fades changes of depositional sequences along U.S.G.S. multichannel seismic Line 25 suggests that Site 612 was an outer continental shelf location from the Campanian until the middle Eocene, when the shelf edge retreated 130 km landward, and Site 612 became a continental slope site. Following this, a prograding prism of terrigenous debris moved the shelf edge to near its present position by the end of the Miocene. Each unconformity identified can be traced widely on seismic reflection profiles and most have been identified from wells and outcrops on the coastal plain and other offshore basins of the U.S. Atlantic margin. Furthermore, their stratigraphic positions and equivalence to similar unconformities on the Goban Spur, in West Africa, New Zealand, Australia, and the Western Interior of the U.S. suggest that most contacts are correlative with the global unconformities and sea-level falls of the Vail depositional model.
Resumo:
Spanish coastal legislation has changed in response to changing circumstances. The objective of the 1969 Spanish Coastal Law was to assign responsibilities in the Public Domain to the authorities. The 1980 Spanish Coastal Law addressed infractions and sanctions issues. The 1988 Spanish Coastal Law completed the responsibilities and sanctions aspects and included others related to the delimitation of the Public Domain, the private properties close to the Public Domain, and limitations on landuse in this area. The 1988 Spanish Coastal Law has been controversial since its publication. The “European Parliament Report on the impact of extensive urbanization in Spain on individual rights of European citizen, on the environment and on the application of EU law, based upon petitions received”, published in 2009 recommended that the Spanish Authorities make an urgent revision of the Coastal Law with the main objective of protecting property owners whose buildings do not have negative effects on the coastal environment. The revision recommended has been carried out, in the new Spanish Coastal Law “Ley 2/2013, de 29 de mayo, de protección y uso sostenible del litoral y de modificación de la Ley 22/1988, de 28 de Julio, de Costas”, published in May of 2013. This is the first major change in the 25 years since the previous 1988 Spanish Coastal Law. This paper compares the 1988 and 2013 Spanish Coastal Law documents, highlighting the most important issues like the Public Domain description, limitations in private properties close to the Public Domain limit, climate change influence, authorizations length, etc. The paper includes proposals for further improvements.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of Massachusetts, Connecticut and Rhode Island : constructed from the latest authorities, drawn by D.H. Vance ; engraved by J.H. Young. It was published by A. Finley in 1825. Scale [ca. 1:700,000]. Covers also portions of New York, New Jersey, Vermont, and New Hampshire. The image inside the map neatline is georeferenced to the surface of the earth and fit to the USA Contiguous Albers Equal Area Conic projection (Meters). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, state, county, and town boundaries, and more. Relief is shown pictorially. Includes statistical table. This layer is part of a selection of digitally scanned and georeferenced historic maps of New England from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Connecticut and parts adjacent. It was published in 1780 by Cóvens and Mortier and Cóvens Junior. Scale [ca. 1:375,000]. Covers also portions of New York (including Long Island), New Jersey, and Rhode Island. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Connecticut State Plane Coordinate System (Feet) (FIPS 0600). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, county and town boundaries and more. Relief is shown pictorially. This layer is part of a selection of digitally scanned and georeferenced historic maps of New England from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates, scales, and map purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of the New York wilderness : to accompany Wallace's Descriptive guide to the Adirondacks, by W. W. Ely. It was published by G. W. & C. B. Colton & Co. in 1876. Scale [1:253,440]. Covers the Adirondack Mountains Region including portions of St. Lawrence, Franklin, Clinton, Lewis, Herkimer, Hamilton, Essex, Oneida, Warren, and Saratoga Counties. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, hotels, and township and county boundaries and more. Relief is shown by hachures and spot heights. Includes inset: [Northeastern states]. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of Lake George, Rev. ed., by S. R. Stoddard. It was published by S. R. Stoddard in 1890. Scale [ca. 1:63,360]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, township and county boundaries, radial distances from multiple points, selected public buildings, private residences with names of property owners, other points of interest, and more. Relief is shown by hachures and spot heights. Includes insets: Ruins of Fort Ticonderoga in 1873 -- [The Narrows Region] -- [Hulett's Landing Region] -- [Floating Battery/Mother Bunch islands] -- [Kattskill Bay] -- [Bolton] -- [Caldwell] -- [Glens Falls Region]. Includes historical notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of Lake George & vicinity : from recent and careful surveys, by F.W. Beers. It was published by J.B. Beers & Co., ca. 1876. Scale [1:79,200]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, post offices, hotels, township boundaries, and more. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of the Adirondack wilderness, compiled by S.R. Stoddard. 4th rev. ed. It was published by S.R. Stoddard in 1883. Scale [ca. 1:255,000]. Covers the Adirondack Mountains Region, New York, including portions of St. Lawrence, Franklin, Clinton, Lewis, Herkimer, Hamilton, Essex, Warren, and Saratoga Counties. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as natural features, drainage, railroads, important roads, ordinary roads, carries and trails, and township and county boundaries, and more. "Distances are given in Figures on Roads and Trails. Air-Line Distances from Mount Marcy are indicated by Circles, 10 miles apart." Relief is shown by hachures and spot heights. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: New map of Philadelphia. It was published by Pickwick & Co., Booksellers in 1882. Scale not given. Covers also a portion of Camden, New Jersey. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD83 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, selected public buildings, city wards, parks, cemeteries, wharves, ferry routes, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: New map of the city of Philadelphia :from the latest city surveys : prepared for Gopsill's directories 1893. It was published by J.L. Smith in 1893. Scale [ca.1:21,500]. Covers Philadelphia and a portion of surrounding cities. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD83 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, selected public buildings, cemeteries, parks, city wards, and more. Includes three indices: Street directory -- Statistical notes -- Elevation of the highest recorded points above high tides in the Delaware River. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: New map of the city of Philadelphia, 1900 : from the latest city surveys : prepared for Gopsill's directories 1900. It was published by J. L. Smith in 1900. Scale [ca. 1:21,500]. Covers Philadelphia and a portion of surrounding cities. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD83 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, canals, city wards, parks, cemeteries, wharves, selected public buildings, and more. Includes street directory, statistical notes, and list of elevations. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Rand McNally new commercial atlas map of Philadelphia. It was published by Rand McNally & Co. in 1916. Scale [ca. 1:20,300]. Covers also a portion of Camden, New Jersey. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD83 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, subways and elevated street cars, drainage, selected public buildings, cemeteries, parks, wharves, and more. Includes indexes and inset: Philadelphia and vicinity. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey sheet map set entitled: Philadelphia and vicinity, east, 1955 (and west, 1956) (Pennsylvania - New Jersey) by the Geological Survey. It was published in 1958. Scale 1:24,000. Covers Philadelphia and portions of adjacent counties. Mapped by the Geological Survey, U.S. Coast and Geodetic Survey and Army Map Service. Compiled from 1:24,000 scale maps of Langhorne 1953, Hatboro 1952, Ambler 1952, Germantown 1952, Frankford 1950, Beverly 1955, Moorestown 1953, Camden 1949, Philadelphia 1949, Woodbury 1949, Rennemede 1952, and Clementon 1953 7.5 minute quadrangles. This layer is image 1 of 2 total images of the two sheet source map set representing the eastern portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Pennsylvania South State Plane Coordinate System NAD27 (in Feet) (Fipszone 3702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.