702 resultados para Neuroimaging


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Internet está inserida no cotidiano do indivíduo, e torna-se cada vez mais acessível por meio de diferentes tipos de dispositivos. Com isto, diversos estudos foram realizados com o intuito de avaliar os reflexos do seu uso excessivo na vida pessoal, acadêmica e profissional. Esta dissertação buscou identificar se a perda de concentração e o isolamento social são alguns dos reflexos individuais que o uso pessoal e excessivo de aplicativos de comunicação instantânea podem resultar no ambiente de trabalho. Entre as variáveis selecionadas para avaliar os aspectos do uso excessivo de comunicadores instantâneos tem-se a distração digital, o controle reduzido de impulso, o conforto social e a solidão. Através de uma abordagem de investigação quantitativa, utilizaram-se escalas aplicadas a uma amostra de 283 pessoas. Os dados foram analisados por meio de técnicas estatísticas multivariadas como a Análise Fatorial Exploratória e para auferir a relação entre as variáveis, a Regressão Linear Múltipla. Os resultados deste estudo confirmam que o uso excessivo de comunicadores instantâneos está positivamente relacionado com a perda de concentração, e a variável distração digital exerce uma influência maior do que o controle reduzido de impulso. De acordo com os resultados, não se podem afirmar que a solidão e o conforto social exercem relações com aumento do isolamento social, devido à ausência do relacionamento entre os construtos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mood disorders are among the most common neuropsychiatric illnesses, yet little is known about their neurobiology. Recent neuroimaging studies have found that the volume of the subgenual part of Brodmann’s area 24 (sg24) is reduced in familial forms of major depressive disorder (MDD) and bipolar disorder (BD). In this histological study, we used unbiased stereological techniques to examine the cellular composition of area sg24 in two different sets of brains. There was no change in the number or size of neurons in area sg24 in mood disorders. In contrast, the numbers of glia were reduced markedly in both MDD and BD. The reduction in glial number was most prominent in subgroups of subjects with familial MDD (24%, P = 0.01) or BD (41%, P = 0.01). The glial reduction in subjects without a clear family history was lower in magnitude and not statistically significant. Consistent with neuroimaging findings, cortical volume was reduced in area sg24 in subjects with familial mood disorders. Schizophrenic brains studied as psychiatric controls had normal neuronal and glial numbers and cortical volume. Glial and neuronal numbers also were counted in area 3b of the somatosensory cortex in the same group of brains and were normal in all psychiatric groups. Glia affect several processes, including regulation of extracellular potassium, glucose storage and metabolism, and glutamate uptake, all of which are crucial for normal neuronal activity. We thus have identified a biological marker associated with familial mood disorders that may provide important clues regarding the pathogenesis of these common psychiatric conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of neuroimaging findings have been interpreted as evidence that the left inferior frontal gyrus (IFG) subserves retrieval of semantic knowledge. We provide a fundamentally different interpretation, that it is not retrieval of semantic knowledge per se that is associated with left IFG activity but rather selection of information among competing alternatives from semantic memory. Selection demands were varied across three semantic tasks in a single group of subjects. Functional magnetic resonance imaging signal in overlapping regions of left IFG was dependent on selection demands in all three tasks. In addition, the degree of semantic processing was varied independently of selection demands in one of the tasks. The absence of left IFG activity for this comparison counters the argument that the effects of selection can be attributed solely to variations in degree of semantic retrieval. Our findings suggest that it is selection, not retrieval, of semantic knowledge that drives activity in the left IFG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modern functional neuroimaging methods, such as positron-emission tomography (PET), optical imaging of intrinsic signals, and functional MRI (fMRI) utilize activity-dependent hemodynamic changes to obtain indirect maps of the evoked electrical activity in the brain. Whereas PET and flow-sensitive MRI map cerebral blood flow (CBF) changes, optical imaging and blood oxygenation level-dependent MRI map areas with changes in the concentration of deoxygenated hemoglobin (HbR). However, the relationship between CBF and HbR during functional activation has never been tested experimentally. Therefore, we investigated this relationship by using imaging spectroscopy and laser-Doppler flowmetry techniques, simultaneously, in the visual cortex of anesthetized cats during sensory stimulation. We found that the earliest microcirculatory change was indeed an increase in HbR, whereas the CBF increase lagged by more than a second after the increase in HbR. The increased HbR was accompanied by a simultaneous increase in total hemoglobin concentration (Hbt), presumably reflecting an early blood volume increase. We found that the CBF changes lagged after Hbt changes by 1 to 2 sec throughout the response. These results support the notion of active neurovascular regulation of blood volume in the capillary bed and the existence of a delayed, passive process of capillary filling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional neuroimaging studies in human subjects using positron emission tomography or functional magnetic resonance imaging (fMRI) are typically conducted by collecting data over extended time periods that contain many similar trials of a task. Here methods for acquiring fMRI data from single trials of a cognitive task are reported. In experiment one, whole brain fMRI was used to reliably detect single-trial responses in a prefrontal region within single subjects. In experiment two, higher temporal sampling of a more limited spatial field was used to measure temporal offsets between regions. Activation maps produced solely from the single-trial data were comparable to those produced from blocked runs. These findings suggest that single-trial paradigms will be able to exploit the high temporal resolution of fMRI. Such paradigms will provide experimental flexibility and time-resolved data for individual brain regions on a trial-by-trial basis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multistudy analysis of positron emission tomography data identified three right prefrontal and two left prefrontal cortical sites, as well as a region in the anterior cingulate gyrus, where neuronal activity is correlated with the maintenance of episodic memory retrieval mode (REMO), a basic and necessary condition of remembering past experiences. The right prefrontal sites were near the frontal pole [Brodmann's area (BA) 10], frontal operculum (BA 47/45), and lateral dorsal area (BA 8/9). The two left prefrontal sites were homotopical with the right frontal pole and opercular sites. The same kinds of REMO sites were not observed in any other cerebral region. Many previous functional neuroimaging studies of episodic memory retrieval have reported activations near the frontal REMO sites identified here, although their function has not been clear. Many of these, too, probably have signaled their involvement in REMO. We propose that REMO activations largely if not entirely account for the frontal hemispheric asymmetry of retrieval as described by the original hemispheric encoding retrieval asymmetry model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subcortical nuclei in the thalamus, which play an important role in many functions of the human brain, provide challenging targets for functional mapping with neuroimaging techniques because of their small sizes and deep locations. In this study, we explore the capability of high-resolution functional magnetic resonance imaging at 4 Tesla for mapping the retinotopic organization in the lateral geniculate nucleus (LGN). Our results show that the hemifield visual stimulation only activates LGN in the contralateral hemisphere, and the lower-field and upper-field visual stimulations activate the superior and inferior portion of LGN, respectively. These results reveal a similar retinotopic organization between the human and nonhuman primate LGN and between LGN and the primary visual cortex. We conclude that high-resolution functional magnetic resonance imaging is capable of functional mapping of suborganizations in small nuclei together with cortical activation. This will have an impact for studying the thalamocortical networks in the human brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate and automated methods for measuring the thickness of human cerebral cortex could provide powerful tools for diagnosing and studying a variety of neurodegenerative and psychiatric disorders. Manual methods for estimating cortical thickness from neuroimaging data are labor intensive, requiring several days of effort by a trained anatomist. Furthermore, the highly folded nature of the cortex is problematic for manual techniques, frequently resulting in measurement errors in regions in which the cortical surface is not perpendicular to any of the cardinal axes. As a consequence, it has been impractical to obtain accurate thickness estimates for the entire cortex in individual subjects, or group statistics for patient or control populations. Here, we present an automated method for accurately measuring the thickness of the cerebral cortex across the entire brain and for generating cross-subject statistics in a coordinate system based on cortical anatomy. The intersubject standard deviation of the thickness measures is shown to be less than 0.5 mm, implying the ability to detect focal atrophy in small populations or even individual subjects. The reliability and accuracy of this new method are assessed by within-subject test–retest studies, as well as by comparison of cross-subject regional thickness measures with published values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Memory illusions and distortions have long been of interest to psychology researchers studying memory, but neuropsychologists and neuroscientists have paid relatively little attention to them. This article attempts to lay the foundation for a cognitive neuroscience analysis of memory illusions and distortions by reviewing relevant evidence from a patient with a right frontal lobe lesion, patients with amnesia produced by damage to the medial temporal lobes, normal aging, and healthy young volunteers studied with functional neuroimaging techniques. Particular attention is paid to the contrasting roles of prefrontal cortex and medial temporal lobe structures in accurate and illusory remembering. Converging evidence suggests that the study of illusory memories can provide a useful tool for delineating the brain processes and systems involved in constructive aspects of remembering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies indicate that impairments in two cognitive domains characterize the cognitive abnormalities that appear earliest in the course of Alzheimer disease (AD). These cognitive domains pertain to memory and executive function ability; in particular, memory test scores reflecting the difference between immediate and delayed recall and tasks that assess cognitive flexibility (e.g., set-shifting). Preliminary data indicate that tasks of this nature, along with specific genetic information (i.e., APOE-4 status), are important in identifying which individuals with recent cognitive changes (considered to have “questionable” disease) will progress to the point where they meet criteria for AD over time. When this cognitive and genetic information is combined with neuroimaging measures targeted at the brain regions demonstrating pathology early in AD, it may serve as specific and accurate prognostic markers of AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Event-related brain potentials (ERPs) provide high-resolution measures of the time course of neuronal activity patterns associated with perceptual and cognitive processes. New techniques for ERP source analysis and comparisons with data from blood-flow neuroimaging studies enable improved localization of cortical activity during visual selective attention. ERP modulations during spatial attention point toward a mechanism of gain control over information flow in extrastriate visual cortical pathways, starting about 80 ms after stimulus onset. Paying attention to nonspatial features such as color, motion, or shape is manifested by qualitatively different ERP patterns in multiple cortical areas that begin with latencies of 100–150 ms. The processing of nonspatial features seems to be contingent upon the prior selection of location, consistent with early selection theories of attention and with the hypothesis that spatial attention is “special.”

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of patients with focal brain damage suggest that topographical representation is subserved by dissociable neural subcomponents. This article offers a condensed review of the literature of “topographical disorientation” and describes several functional MRI studies designed to test hypotheses generated by that review. Three hypotheses are considered: (i) The parahippocampal cortex is critically involved in the acquisition of exocentric spatial information in humans; (ii) separable, posterior, dorsal, and ventral cortical regions subserve the perception and long term representation of position and identity, respectively, of landmarks; and (iii) there is a distinct area of the ventral occipitotemporal cortex that responds maximally to building stimuli and may play a role in the perception of salient landmarks. We conclude with a discussion of the inferential limitations of neuroimaging and lesion studies. It is proposed that combining these two approaches allows for inferences regarding the computational involvement of a neuroanatomical substrate in a given cognitive process although neither method can strictly support this conclusion alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functional specialization and hierarchical organization of multiple areas in rhesus monkey auditory cortex were examined with various types of complex sounds. Neurons in the lateral belt areas of the superior temporal gyrus were tuned to the best center frequency and bandwidth of band-passed noise bursts. They were also selective for the rate and direction of linear frequency modulated sweeps. Many neurons showed a preference for a limited number of species-specific vocalizations (“monkey calls”). These response selectivities can be explained by nonlinear spectral and temporal integration mechanisms. In a separate series of experiments, monkey calls were presented at different spatial locations, and the tuning of lateral belt neurons to monkey calls and spatial location was determined. Of the three belt areas the anterolateral area shows the highest degree of specificity for monkey calls, whereas neurons in the caudolateral area display the greatest spatial selectivity. We conclude that the cortical auditory system of primates is divided into at least two processing streams, a spatial stream that originates in the caudal part of the superior temporal gyrus and projects to the parietal cortex, and a pattern or object stream originating in the more anterior portions of the lateral belt. A similar division of labor can be seen in human auditory cortex by using functional neuroimaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The brain amyloid of Alzheimer disease (AD) may potentially be imaged in patients with AD by using neuroimaging technology and a radiolabeled form of the 40-residue beta-amyloid peptide A beta 1-40 that is enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier (BBB) in vivo. Transport of 125I-labeled A beta 1-40 (125I-A beta 1-40) through the BBB was found to be negligible by experiments with both an intravenous injection technique and an internal carotid artery perfusion method in anesthetized rats. In addition, 125I-A beta 1-40 was rapidly metabolized after either intravenous injection or internal carotid artery perfusion. BBB transport was increased and peripheral metabolism was decreased by conjugation of monobiotinylated 125I-A beta 1-40 to a vector-mediated drug delivery system, which consisted of a conjugate of streptavidin (SA) and the OX26 monoclonal antibody to the rat transferrin receptor, which undergoes receptor-mediated transcytosis through the BBB. The brain uptake, expressed as percent of injected dose delivered per gram of brain, of the 125I,bio-A beta 1-40/SA-OX26 conjugate was 0.15 +/- 0.01, a level that is 2-fold greater than the brain uptake of morphine. The binding of the 125I,bio-A beta 1-40/SA-OX26 conjugate to the amyloid of AD brain was demonstrated by both film and emulsion autoradiography performed on frozen sections of AD brain. Binding of the 125I,bio-A beta 1-40/SA-OX26 conjugate to the amyloid of AD brain was completely inhibited by high concentrations of unlabeled A beta 1-40. In conclusion, these studies show that BBB transport and access to amyloid within brain may be achieved by conjugation of A beta 1-40 to a vector-mediated BBB drug delivery system.