987 resultados para Nd isotopes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycling of oceanic crust into the deep mantle via subduction is a widely accepted mechanism for creating compositional heterogeneity in the upper mantle and for explaining the distinct geochemistry of mantle plumes. The oxygen isotope ratios (d18O) of some ocean island basalts (OIB) span values both above and below that of unmetasomatised upper mantle (5.5 ± 0.4 per mil) and provide support for this hypothesis, as it is widely assumed that most variations in d18O are produced by near-surface low-temperature processes. Here we show a significant linear relationship between d18O and stable iron isotope ratios (d57Fe) in a suite of pristine eclogite xenoliths. The d18O values of both bulk samples and garnets range from values within error of normal mantle to significantly lighter values. The observed range and correlation between d18O and d57Fe is unlikely to be inherited from oceanic crust, as d57Fe values determined for samples of hydrothermally altered oceanic crust do not differ significantly from the mantle value and show no correlation with d18O. It is proposed that the correlated d57Fe and d18O variations in this particular eclogite suite are predominantly related to isotopic fractionation by disequilibrium partial melting although modification by melt percolation processes cannot be ruled out. Fractionation of Fe and O isotopes by removal of partial melt enriched in isotopically heavy Fe and O is supported by negative correlations between bulk sample d57Fe and Cr content and bulk sample and garnet d18O and Sc contents, as Cr and Sc are elements that become enriched in garnet- and pyroxene-bearing melt residues. Melt extraction could take place either during subduction, where the eclogites represent the residues of melted oceanic lithosphere, or could take place during long-term residence within the lithospheric mantle, in which case the protoliths of the eclogites could be of either crustal or mantle origin. This modification of both d57Fe and d18O by melting processes and specifically the production of low-d18O signatures in mafic rocks implies that some of the isotopically light d18O values observed in OIB and eclogite xenoliths may not necessarily reflect near-surface processes or components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollen and stable carbon (d13C) and hydrogen (dD) isotope ratios of terrestrial plant wax from the South Atlantic sediment core, ODP Site 1085, is used to reconstruct Miocene to Pliocene changes of vegetation and rainfall regime of western southern Africa. Our results reveal changes in the relative amount of precipitation and indicate a shift of the main moisture source from the Atlantic to the Indian Ocean during the onset of a major aridification 8 Ma ago. We emphasise the importance of declining precipitation during the expansion of C4 and CAM (mainly succulent) vegetation in South Africa. We suggest that the C4 plant expansion resulted from an increased equator-pole temperature gradient caused by the initiation of strong Atlantic Meridional Overturning Circulation following the shoaling of the Central American Seaway during the Late Miocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrabasic rock samples collected from two areas of the crustal zone of the Mid-Atlantic Ridge (MAR): (1) 13-17°N (near the intersection of the ridge axis with the 15°20'N prime fracture zone), and (2) 33°40'N prime (the western intersection of the MAR crest with the Heis fracture zone) were objects of this study. Samples of peridotite and of plutonic and volcanic rocks associated with it were used to measure their Sm/Nd, 143Nd/144Nd, and 147Sm/144Nd ratios, which allowed to test time and genetic relationships between evolution of mantle material under the ridge crest and products of its magmatic activity. Results of this work proved ubiquitous discrepancy between melting degree values of extremely depleted mantle peridotites in the MAR area between 14°N and 16°N, obtained using petrologic and geochemical methods. This discrepancy suggests large-scale interaction between mantle material and magmatic melts and fluids enriched in incompatible elements or fluids. The results obtained suggest that repeated melting of the mantle under the axial MAR zone is an universal characteristic of magmatism in low-velocity spreading centers. The results of this study also proved the crestal MAR zone in the Central Atlantic region show distinct indications of isotope-geochemical segmentation of the mantle. It is suggested that the geochemically anomalous MAR mantle peridotite in the zone of the MAR intersection with the 15°20'N prime fracture zone can be interpreted as fragments of mantle substrate, foreign for the Atlantic mantle north of the equator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of widespread anoxic conditions in the deep oceans is evidenced by the accumulation and preservation of organic-carbon-rich sediments, but its precise cause remains controversial. The two most popular hypotheses involve (1) circulation-induced increased stratification resulting in reduced oxygenation of deep waters or (2) enhanced productivity in the surface ocean, increasing the raining down of organic matter and overwhelming the oxic remineralization potential of the deep ocean. In the periodic development of deep-water anoxia in the Pliocene-Pleistocene Mediterranean Sea, increased riverine runoff has been implicated both as a source for nutrients that fuel enhanced photic-zone productivity and a source of a less dense freshwater cap leading to reduced circulation, basin-wide stagnation, and deep-water oxygen starvation. Monsoon-driven increases in Nile River discharge and increased regional precipitation due to enhanced westerly activity-two mechanisms that represent fundamentally different climatic driving forces-have both been suggested as causes of the altered freshwater balance. Here we present data that confirm a distinctive neodymium (Nd) isotope signature for the Nile River relative to the Eastern Mediterranean-providing a new tracer of enhanced Nile outflow into the Mediterranean in the past. We further present Nd isotope data for planktonic foraminifera that suggest a clear increase in Nile discharge during the central intense period of two recent anoxic events. Our data also suggest, however, that other regional freshwater sources were more important at the beginning and end of the anoxic events. Taken at face value, the data appear to imply a temporal link between peaks in Nile discharge and enhanced westerly activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to determine the helium and neon isotopic composition of the lower oceanic crust, we report new noble gas measurements on 11 million year old gabbros from Ocean Drilling Program site 735B in the Indian Ocean. The nine whole rock samples analyzed came from 20 to 500 m depth below the seafloor. Helium contents vary from 3.3*10**-10 to 2.5*10**-7 ccSTP/g by crushing and from 5.4*10**-8 to 2.4*10**-7 ccSTP/g by melting. 3He/4He ratios vary between 2.2 and 8.6 Ra by crushing and between 2.9 and 8.2 by melting. The highest R/Ra ratios are similar to the mean mid-ocean ridge basalt (MORB) ratio of 8+/-1. The lower values are attributed to radiogenic helium from in situ alüha-particle production during uranium and thorium decay. Neon isotopic ratios are similar to atmospheric ratios, reflecting a significant seawater circulation in the upper 500 m of exposed crust at this site. MORB-like neon, with elevated 20Ne/22Ne and 21Ne/22Ne ratios, was found in some high temperature steps of heating experiments, but with very small anomalies compared to air. These first results from the lower oceanic crust indicate that subducted lower oceanic crust has an atmospheric 20Ne/22Ne ratio. Most of this neon must be removed during the subduction process, if the ocean crust is to be recirculated in the upper mantle, otherwise this atmospheric neon will overwhelm the upper mantle neon budget. Similarly, the high (U+Th)/3He ratio of these crustal gabbros will generate very radiogenic 4He/3He ratios on a 100 Ma time scale, so lower oceanic crust cannot be recycled into either MORB or oceanic island basalt without some form of processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The D/H, 18O/16O and 87Sr/86Sr ratios of the basaltic basement from the Leg 83 section of DSDP Hole 504B show that in that area the oceanic crust has experienced intensive but not pervasive alteration. Isotope ratios of the basalts are very heterogeneous because of an input of oxygen, hydrogen, and strontium from seawater. The hydrogen isotopic composition of many samples displays the complete thermal history of the water-rock interactions. High-temperature mineral formations (actinolites, epidotes, and chlorites) were overgrown by a mineralization at lower temperatures (mixedlayer smectites, iddingsites, and smectites) during successive stages of cooling of the oceanic crust by cold seawater. From 87Sr/86Sr data bulk water/rock ratios up to 5:1 have been calculated. There is evidence that some primary minerals like high-An plagioclases contain oxygen from altered basalts. We have discussed the probability that there existed a seawater/crust interface, now at a depth of 620 m sub-basement, during the high-temperature water/rock interactions. This interface was covered during later magmatism by thick flows, pillow lavas, and intrusives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthic d18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069-779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (~940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthic d18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonic d18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.