652 resultados para NOx


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diesel trucks and buses account for approximately 50 percent of the particulate matter (PM) and oxides of nitrogen (NOx) air pollution from on-road vehicles in Illinois. PM and NOx may contribute to a variety of health effects, including nausea, headaches, increased risk of asthma attacks, lung cancer, and premature death. Children and people with lung and heart conditions, are generally the most sensitive to diesel exhaust. Millions of tons of air pollution are emitted every year in the U.S. by trucks and buses that idle while parked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of anaerobic ammonium oxidation (anammox) in nature has been addressed by only a few environmental studies, and our understanding of how anammox bacteria compete for substrates in natural environments is therefore limited. In this study, we measure the potential anammox rates in sediment from four locations in a subtropical tidal river system. Porewater profiles of NOx- (NO2- plus NO3-) and NO2- were measured with microscale biosensors, and the availability of NO2- was compared with the potential for anammox activity. The potential rate of anammox increased with increasing distance from the mouth of the river and correlated strongly with the production of nitrite in the sediment and with the average concentration or total pool of nitrite in the suboxic sediment layer. Nitrite accumulated both from nitrification and from NOx- reduction, though NOx- reduction was shown to have the greatest impact on the availability of nitrite in the suboxic sediment layer. This finding suggests that denitrification, though using NO2- as a substrate, also provides a substrate for the anammox process, which has been suggested in previous studies where microscale NO2- profiles were not measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biomass-derived liquids (in short: bioliquids) instead of solid biomass can help overcome some of the barriers hindering a wider use of biomass in smaller-scale CHP systems. Relevant bioliquids included biodiesel, vegetable oils as well straight and upgraded pyrolysis oil. In this joint EU-Russian research project Bioliquids-CHP prime movers (engines and turbines) will be developed and modified so that these can run efficiently on bioliquids. At the same time, bioliquids will be upgraded and blended in order to facilitate their use in prime movers. Preliminary results with regard to bioliquid selection, production, and characterisation; the selection and modification of a micro gas turbine; and the development of engines and components are discussed. The research also covers NOx emission reduction and control and an assessment of the benefits and economics of bioliquids-based CHP systems in EU and Russian markets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews nitrogen (N) cycle of effluent-irrigated energy crop plantations, starting from wastewater treatment to thermo-chemical conversion processes. In wastewater, N compounds contribute to eutrophication and toxicity in water cycle. Removal of N via vegetative filters and specifically in short-rotation energy plantations, is a relatively new approach to managing nitrogenous effluents. Though combustion of energy crops is in principle carbon neutral, in practice, N content may contribute to NOx emissions with significant global warming potential. Intermediate pyrolysis produces advanced fuels while reducing such emissions. By operating at intermediate temperature (500°C), it retains most N in char as pyrrolic-N, pyridinic-N, quaternary-N and amines. In addition, biochar provides long-term sequestration of carbon in soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG  k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypoxia is a stress condition in which tissues are deprived of an adequate O2 supply; this may trigger cell death with pathological consequences in cardiovascular or neurodegenerative disease. Reperfusion is the restoration of an oxygenated blood supply to hypoxic tissue and can cause more cell injury. The kinetics and consequences of reactive oxygen and nitrogen species (ROS/RNS) production in cardiomyoblasts are poorly understood. The present study describes the systematic characterization of the kinetics of ROS/RNS production and their roles in cell survival and associated protection during hypoxia and hypoxia/reperfusion. H9C2 cells showed a significant loss of viability under 2% O2 for 30min hypoxia and cell death; associated with an increase in protein oxidation. After 4h, apoptosis induction under 2% O2 and 10% O2 was dependent on the production of mitochondrial superoxide (O2-•) and nitric oxide (•NO), partly from nitric oxide synthase (NOS). Both apoptotic and necrotic cell death during 2% O2 for 4h could be rescued by the mitochondrial complex I inhibitor; rotenone and NOS inhibitor; L-NAME. Both L-NAME and the NOX (NADPH oxidase) inhibitor; apocynin reduced apoptosis under 10% O2 for 4h hypoxia. The mitochondrial uncoupler; FCCP significantly reduced cell death via a O2-• dependent mechanism during 2% O2, 30min hypoxia. During hypoxia (2% O2, 4h)/ reperfusion (21% O2, 2h), metabolic activity was significantly reduced with increased production of O2-• and •NO, during hypoxia but, partially restored during reperfusion. O2-• generation during hypoxia/reperfusion was mitochondrial and NOX- dependent, whereas •NO generation depended on both NOS and non-enzymatic sources. Inhibition of NOS worsened metabolic activity during reperfusion, but did not effect this during sustained hypoxia. Nrf2 activation during 2% O2, a sustained hypoxia and reperfusion was O2-•/•NO dependent. Inhibition of NF-?B activation aggravated metabolic activity during 2% O2, 4h hypoxia. In conclusion, mitochondrial O2-•, but, not ATP depletion is the major cause of apoptotic and necrotic cell death in cardiomyoblasts under 2% O2, 4h hypoxia, whereas apoptotic cell death under 10% O2, 4h, is due to NOS-dependent •NO. The management of ROS/RNS rather than ATP is required for improved survival during hypoxia. O2-• production from mitochondria and NOS is cardiotoxic during hypoxia/reperfusion. NF-?B activation during hypoxia and NOS activation during reperfusion is cardiomyoblast protective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxidase (NOX) enzyme and antioxidant enzyme systems in murine adenocarcinoma tumour-bearing cachectic mice. Methods - Superoxide levels, mRNA levels of NOX enzyme subunits and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidise (GPx) and catalase was measured in the skeletal muscle of mice with cancer and cancer cachexia. Protein expression levels of NOX enzyme subunits and antioxidant enzyme activity was also measured in the same muscle samples. Results - Superoxide levels increased 1.4-fold in the muscle of mice with cancer cachexia, and this was associated with a decrease in mRNA of NOX enzyme subunits, NOX2, p40phox and p67phox along with the antioxidant enzymes SOD1, SOD2 and GPx. Cancer cachexia was also associated with a 1.3-fold decrease in SOD1 and 2.0-fold decrease in GPx enzyme activity. Conclusion - Despite increased superoxide levels in cachectic skeletal muscle, NOX enzyme subunits, NOX2, p40phox and p67phox, were downregulated along with the expression and activity of the antioxidant enzymes. Therefore, the increased superoxide levels in cachectic skeletal muscle may be attributed to the reduction in the activity of endogenous antioxidant enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De-inking sludge can be converted into useful forms of energy to provide economic and environmental benefits. In this study, pyrolysis oil produced from de-inking sludge through an intermediate pyrolysis technique was blended with biodiesel derived from waste cooking oil, and tested in a multi-cylinder indirect injection type CI engine. The physical and chemical properties of pyrolysis oil and its blends (20 and 30 vol.%) were measured and compared with those of fossil diesel and pure biodiesel (B100). Full engine power was achieved with both blends, and very little difference in engine performance and emission results were observed between 20% and 30% blends. At full engine load, the brake specific fuel consumption on a volume basis was around 6% higher for the blends when compared to fossil diesel. The brake thermal efficiencies were about 3-6% lower than biodiesel and were similar to fossil diesel. Exhaust gas emissions of the blends contained 4% higher CO2 and 6-12% lower NOx, as compared to fossil diesel. At full load, CO emissions of the blends were decreased by 5-10 times. The cylinder gas pressure diagram showed stable engine operation with the 20% blend, but indicated minor knocking with 30% blend. Peak cylinder pressure of the 30% blend was about 5-6% higher compared to fossil diesel. At full load, the peak burn rate of combustion from the 30% blend was about 26% and 12% higher than fossil diesel and biodiesel respectively. In comparison to fossil diesel the combustion duration was decreased for both blends; for 30% blend at full load, the duration was almost 12% lower. The study concludes that up to 20% blend of de-inking sludge pyrolysis oil with biodiesel can be used in an indirect injection CI engine without adding any ignition additives or surfactants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are known to be involved in angiotensin II-induced hypertension and endothelial dysfunction. Several Nox isoforms are expressed in the vessel wall, among which Nox2 is especially abundant in the endothelium. Endothelial Nox2 levels rise during hypertension but little is known about the cell-specific role of endothelial Nox2 in vivo. To address this question, we generated transgenic mice with endothelial-specific overexpression of Nox2 (Tg) and studied the effects on endothelial function and blood pressure. Tg had an about twofold increase in endothelial Nox2 levels which was accompanied by an increase in p22phox levels but no change in levels of other Nox isoforms or endothelial nitric oxide synthase (eNOS). Basal NADPH oxidase activity, endothelial function and blood pressure were unaltered in Tg compared to wild-type littermates. Angiotensin II caused a greater increase in ROS production in Tg compared to wild-type aorta and attenuated acetylcholine-induced vasorelaxation. Both low and high dose chronic angiotensin II infusion increased telemetric ambulatory blood pressure more in Tg compared to wild-type, but with different patterns of BP change and aortic remodeling depending upon the dose of angiotensin II dose. These results indicate that an increase in endothelial Nox2 levels contributes to angiotensin II-induced endothelial dysfunction, vascular remodeling and hypertension. © 2011 The Author(s).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation.In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites. © 2014 The Authors.