926 resultados para NONLINEAR INTERNAL WAVES
Resumo:
Drawing on principles of social exchange this thesis employs mediated regression to investigate the relationship between internal communication and employee engagement in the Australian workforce. Findings suggest organisations and supervisors should focus internal communication efforts toward building greater perceptions of support and stronger identification among employees in order to foster optimal engagement. This research contributes to public relations and management scholarship through understanding how perceived support and identification act as mediating mechanisms in the relationship between internal communication and employee engagement at the organisational and supervisory level.
Resumo:
This paper presents the application of a statistical method for model structure selection of lift-drag and viscous damping components in ship manoeuvring models. The damping model is posed as a family of linear stochastic models, which is postulated based on previous work in the literature. Then a nested test of hypothesis problem is considered. The testing reduces to a recursive comparison of two competing models, for which optimal tests in the Neyman sense exist. The method yields a preferred model structure and its initial parameter estimates. Alternatively, the method can give a reduced set of likely models. Using simulated data we study how the selection method performs when there is both uncorrelated and correlated noise in the measurements. The first case is related to instrumentation noise, whereas the second case is related to spurious wave-induced motion often present during sea trials. We then consider the model structure selection of a modern high-speed trimaran ferry from full scale trial data.
Resumo:
Parametric ship roll resonance is a phenomenon where a ship can rapidly develop high roll motion while sailing in longitudinal waves. This effect can be described mathematically by periodic changes of the parameters of the equations of motion, which lead to a bifurcation. In this paper, the control design of an active u-tank stabilizer is carried out using Lyapunov theory. A nonlinear backstepping controller is developed to provide global exponential stability of roll. An extension of commonly used u-tank models is presented to account for large roll angles, and the control design is tested via simulation on a high-fidelity model of a vessel under parametric roll resonance.
Resumo:
For users of germplasm collections, the purpose of measuring characterization and evaluation descriptors, and subsequently using statistical methodology to summarize the data, is not only to interpret the relationships between the descriptors, but also to characterize the differences and similarities between accessions in relation to their phenotypic variability for each of the measured descriptors. The set of descriptors for the accessions of most germplasm collections consists of both numerical and categorical descriptors. This poses problems for a combined analysis of all descriptors because few statistical techniques deal with mixtures of measurement types. In this article, nonlinear principal component analysis was used to analyze the descriptors of the accessions in the Australian groundnut collection. It was demonstrated that the nonlinear variant of ordinary principal component analysis is an appropriate analytical tool because subspecies and botanical varieties could be identified on the basis of the analysis and characterized in terms of all descriptors. Moreover, outlying accessions could be easily spotted and their characteristics established. The statistical results and their interpretations provide users with a more efficient way to identify accessions of potential relevance for their plant improvement programs and encourage and improve the usefulness and utilization of germplasm collections.
Resumo:
Employee engagement is linked to higher productivity, lower attrition, and improved organizational reputations resulting in increased focus and resourcing by managers to foster an engaged workforce. While drivers of employee engagement have been identified as perceived support, job characteristics, and value congruence, internal communication is theoretically suggested to be a key influence in both the process and maintenance of employee engagement efforts. However, understanding the mechanisms by which internal communication influences employee engagement has emerged as a key question in the literature. The purpose of this research is to investigate whether social factors, namely perceived support and identification, play a mediating role in the relationship between internal communication and engagement. To test the theoretical model, data are collected from 200 non-executive employees using an online self-administered survey. The study applies linear and mediated regression to the model and finds that organizations and supervisors should focus internal communication efforts toward building greater perceptions of support and stronger identification among employees in order to foster optimal levels of engagement.
Resumo:
The wind loading on most structural elements is made up of both an external and internal pressure. Internal pressures are also important for the design of naturally ventilated buildings. The internal pressure is the interaction between the external pressure propagating through the building envelope and any internal plant causing building pressurization. Although the external pressure field can be well defined through a series of wind tunnel tests, modeling complexities makes accurate prediction of the internal pressure difficult. For commercial testing for the determination of design cladding pressures, an internal pressure coefficient is generally assumed from wind loading standards. Several theories regarding the propagation of internal pressures through single and multiple dominant openings have been proposed for small and large flexible buildings (Harris (1990), Holmes, (1979), Liu & Saathoff (1981 ), Vickery (1986, 1994), Vickery & Bloxham (1992), Vickery & Georgiou (1991))...
Resumo:
Three particular geometrical shapes of foods were prepared from food materials. Cuboidal (aspect ratio = 1:1, 2:1, 3:1) , cylindrical (length: dameter = 1:1, 2:1, 3:1) and spheres were selected from potato, beans and peas respectively. Internal porosity was determined from solid density (theoretical)and particle density (experimental) during fluidised bed drying at different moisture contents. Solid density was calculated using formulae (conservation of mass and volume) already published in the literature by previous researchers. Determined porosity values were correlated with moisture ratio for different geometrical shapes.
Resumo:
We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.
Resumo:
The theory of ion-acoustic surface wave propagation on the interface between a dusty plasma and a dielectric is presented. Both the constant and variable dust-charge cases are considered. It is found that massive negatively charged dust grains can significantly affect the propagation and damping of the surface waves. Application of the results to surface-wave generated plasmas is discussed. © 1998 IEEE.
Resumo:
The effect of charged particulates or dusts on surface wave produced microwave discharges is studied. The frequencies of the standing electromagnetic eigenmodes of large-area flat plasmas are calculated. The dusts absorb a significant amount of the plasma electrons and can lead to a modification of the electromagnetic field structure in the discharge by shifting the originally excited operating mode out of resonance. For certain given proportions of dusts, mode conversion is found to be possible. The power loss in the discharge is also increased because of dust-specific dissipations, leading to a decrease of the operating mode quality factor.
Resumo:
The results of comprehensive experimental studies of the operation, stability, and plasma parameters of the low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal oscillating rf current are reported. The rf plasma is generated by using a custom-designed configuration of the internal rf coil that comprises two perpendicular sets of eight currents in each direction. Various diagnostic tools, such as magnetic probes, optical emission spectroscopy, and an rf-compensated Langmuir probe were used to investigate the electromagnetic, optical, and global properties of the argon plasma in wide ranges of the applied rf power and gas feedstock pressure. It is found that the uniformity of the electromagnetic field inside the plasma reactor is improved as compared to the conventional sources of inductively coupled plasmas with the external flat coil configuration. A reasonable agreement between the experimental data and computed electromagnetic field topography inside the chamber is reported. The Langmuir probe measurements reveal that the spatial profiles of the electron density, the effective electron temperature, plasma potential, and electron energy distribution/probability functions feature a high degree of the radial and axial uniformity and a weak azimuthal dependence, which is consistent with the earlier theoretical predictions. As the input rf power increases, the azimuthal dependence of the global plasma parameters vanishes. The obtained results demonstrate that by introducing the internal oscillated rf currents one can noticeably improve the uniformity of electromagnetic field topography, rf power deposition, and the plasma density in the reactor.
Resumo:
A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction.
Resumo:
The excitation of pairs of electron surface waves via nonresonant decay of plasma waves incident onto a solid surface is studied in the context of controlling the interaction of pulsed electromagnetic radiation with plasma-exposed solid surfaces. The role of the plasma-exposed surfaces in nonlinear heating of the plasma edge and related power transfer is discussed. It is shown that the maximum efficiency of the power transfer at solid surfaces with dielectric permittivity εd <3 corresponds to the resonant two-surface wave decay. On the other hand, for solids with εd >3 the maximum power transfer efficiency is achieved through nonresonant excitation of the quasistatic surface waves. In this case the plasma waves generated by external radiation dissipate their energy into the plasma periphery most effectively.
Resumo:
This paper addresses of the advanced computational technique of steel structures for both simulation capacities simultaneously; specifically, they are the higher-order element formulation with element load effect (geometric nonlinearities) as well as the refined plastic hinge method (material nonlinearities). This advanced computational technique can capture the real behaviour of a whole second-order inelastic structure, which in turn ensures the structural safety and adequacy of the structure. Therefore, the emphasis of this paper is to advocate that the advanced computational technique can replace the traditional empirical design approach. In the meantime, the practitioner should be educated how to make use of the advanced computational technique on the second-order inelastic design of a structure, as this approach is the future structural engineering design. It means the future engineer should understand the computational technique clearly; realize the behaviour of a structure with respect to the numerical analysis thoroughly; justify the numerical result correctly; especially the fool-proof ultimate finite element is yet to come, of which is competent in modelling behaviour, user-friendly in numerical modelling and versatile for all structural forms and various materials. Hence the high-quality engineer is required, who can confidently manipulate the advanced computational technique for the design of a complex structure but not vice versa.
Resumo:
The excitation of surface plasmon-polariton waves propagating across an external magnetic field (Voigt geometry) in a semiconductor-metal structure by means of the attenuated total reflection method is investigated. The phase matching conditions for the surface waves excitation in the Kretchmann configuration are derived and analyzed. The effect of different nonlinearities on the excitation of the surface waves is studied as well.