988 resultados para NA2O-B2O3-P2O5
Resumo:
Changes in concentration levels and speciation of heavy metals during sedimentation on example of a typical semi-closed bay, where bottom sediments have formed due to river run-off, are under consideration. It is shown that due to desorption of mobile manganese, zinc and copper entered the bay with river suspended matter, their total contents in bottom sediments decrease and percentages of lithogenic forms increase. Contents and speciation of iron in bottom sediments are determined by its participation in coagulation of river colloids in the mixing zone and by mechanical differentiation of sedimentary material.
Resumo:
Changes in concentration levels and speciation of heavy metals during sedimentation on example of a typical semi-closed bay, where bottom sediments have formed due to river run-off, are under consideration. It is shown that due to desorption of mobile manganese, zinc and copper entered the bay with river suspended matter, their total contents in bottom sediments decrease and percentages of lithogenic forms increase. Contents and speciation of iron in bottom sediments are determined by its participation in coagulation of river colloids in the mixing zone and by mechanical differentiation of sedimentary material.
Resumo:
The microstructures, mineralogy and chemistry of four representative samples collected from cores extracted from the Japan Trench during Integrated Ocean Drilling Project Expedition 343, the Japan Trench Fast Drilling Project (JFAST) have been studied using optical microscopy, TEM, SEM, XRF, XRD and microprobe analyses. The samples provide a transect from relatively undeformed marine sediments in the hanging wall, to the undeformed footwall material, crossing the thrust interface between the Pacific and North American plate, where the fault slipped during the March 2011 Tohoku-Oki earthquake. Our preliminary results suggest that the low strength of JFAST fault gouge material is caused by the high amount of clay minerals (~ 60% smectite, ~ 14 illite). Clay minerals in the décollement (gouge) sample are partly replaced by newly formed manganese oxide, which precipitated from hydrothermal fluids. Dauphine twins were found in quartz grains of the décollement sample suggesting local high stress possible during seismic loading. Other microstructures cannot be assigned unambiguously to co-seismic or a-seismic faulting processes. The observed scaly clay fabric is consistent with observations in many other plate-boundary fault zones. Significant grain size reduction was found in the fault (decollement) zone sample. But a change in lithology of the fault material cannot be ruled out. Microstructures typical for a-seismic deformation like dissolution-precipitation features (e.g. dissolved grain boundaries, mineral alteration) occur in all JFAST core samples, but more frequently in the décollement sample.
Resumo:
Focus of this study is the analysis of a local hydrogeological system in the subhumid outer tropics in the western African country of Benin. The aim was to characterize, qualify and quantify the hydrogeological and hydrological properties of the approx. 30 km2 big study area and to develop a conceptual hydrogeological model. This model should provide the basis for further studies on a regional scale. The main goal was to obtain the process knowledge of the hydrogeological system and to determine the process and the quantity of the groundwater recharge in the working area. According to the objectives, a broad hydrogeological approach was chosen. In a spacious network on the local scale TDR probes, suction cups and groundwater observation bores were installed. Also in a multidisciplinary cooperation with hydrology, geography, soil science, biology, meteorology and plant nutrition sciences, instruments like discharge gauging stations, tensiometers, lysimeter, climate stations, runoff plots and erosion pins were installed in the test site for the investigation of the relevant parameters of the hydrological cycle.
Resumo:
The Labrador Sea is a basin with oceanic crust in its deep part. Bottom morphology of the Labrador Sea is rather complicated. Data of seismic profiling in this region indicate presence of numerous submarine mountains and hills, which are dominated by volcanic rocks. Some chemical and mineral characteristics of the rocks, in particular, high concentrations of alkalis and phosphorus, and presence of high-titanium augite, ilmenite, and devitrified glass enriched in K and Na, allow us to attribute them to K-Na subalkaline picrites typical for ocean islands, seamounts, and oceanic plateaus. Rocks of the K-Na subalkaline series usually form submarine basements and subaerial volcanoes of ocean islands, seamounts, and oceanic plateaus. Thus, the suggestion on formation of the highs on the continental crust is not confirmed by petrographic data, which require a refinement of the tectonic model of the northern part of the Labrador Sea.
Resumo:
During ODP Leg 193, 4 sites were drilled in the active PACMANUS hydrothermal field on the crest of the felsic Pual Ridge to examine the vertical and lateral variations in mineralization and alteration patterns. We present new data on clay mineral assemblages, clay and whole rock chemistry and clay mineral strontium and oxygen isotopic compositions of altered rocks from a site of diffuse low-temperature venting (Snowcap, Site 1188) and a site of high-temperature venting (Roman Ruins, Site 1189) in order to investigate the water-rock reactions and associated elemental exchanges. The volcanic succession at Snowcap has been hydrothermally altered, producing five alteration zones: (1) chlorite+/-illite-cristobalite-plagioclase alteration apparently overprinted locally by pyrophyllite bleaching at temperatures of 260-310°C; (2) chlorite+/-mixed-layer clay alteration at temperatures of 230°C; (3) chlorite and illite alteration; (4) illite and chlorite+/-illite mixed-layer alteration at temperatures of 250-260°C; and (5) illite+/-chlorite alteration at 290-300°C. Felsic rocks recovered from two holes (1189A and 1189B) at Roman Ruins, although very close together, show differing alteration features. Hole 1189A is characterized by a uniform chlorite-illite alteration formed at ~250°C, overprinted by quartz veining at 350°C. In contrast, four alteration zones occur in Hole 1189B: (1) illite+/-chlorite alteration formed at ~300°C; (2) chlorite+/-illite alteration at 235°C; (3) chlorite+/-illite and mixed layer clay alteration; and (4) chlorite+/-illite alteration at 220°C. Mass balance calculations indicate that the chloritization, illitization and bleaching (silica-pyrophyllite assemblages) alteration stages are accompanied by different chemical changes relative to a calculated pristine precursor lava. The element Cr appears to have a general enrichment in the altered samples from PACMANUS. The clay concentrate data show that Cr and Cu are predominantly present in the pyrophyllites. Illite shows a significant enrichment for Cs and Cu relative to the bulk altered samples. Considerations of mineral stability allow us to place some constraints on fluid chemistry. Hydrothermal fluid pH for the chloritization and illitization was neutral to slightly acidic and relatively acidic for the pyrophyllite alteration. In general the fluids, especially from Roman Ruins and at intermediate depths below Snowcap, show only a small proportion of seawater mixing (<10%). Fluids in shallow and deep parts of the Snowcap holes, in contrast, show stronger seawater influence.
Resumo:
The monograph summarizes geological and metallogenic data on the Mid-Atlantic Ridge obtained during research expeditions of the Geological Institute RAS in 2000-2003. Formation of the earth crust in the region, structure of the rift zone, structure of the newly discovered Bogdanov Fracture Zone, neotectonic deformations, metallogenic peculiarities, prospecting criteria of ocean ore mineralization are under consideration.
Resumo:
Three types of tephra deposits were recovered on Leg 65 of the Deep Sea Drilling Project (DSDP) from three drill sites at the mouth of the Gulf of California: (1) a series of white ash layers at Sites 483, 484, and 485; (2) a layer of plagioclase- phyric sideromelane shards at Site 483; and (3) an indurated, cross-bedded hyaloclastite in Hole 483B. The ash layers in (1) are composed of colorless, fresh rhyolitic glass shards with minor dacitic and rare basaltic shards. These are thought to be derived from explosive volcanoes on the Mexican mainland. Most of the shards in (2) are fresh, but some show marginal to complete alteration to palagonite. The composition of the glass is that of a MORB-type tholeiite, low in Fe and moderately high in Ti, and possibly erupted from off-axis seamounts. Basaltic glass shards occurring in silt about 45 meters above the basement at Site 484 A in the Tamayo Fracture Zone show a distinctly alkalic composition similar to that of the single basement basalt specimen drilled at this site. The hyaloclastite in (3) is made up chiefly of angular sideromelane shards altered to smectite and zeolites (mainly phillipsite) and minor admixtures of terrigenous silt. A very high K and Ba content indicates significant uptake of at least these elements from seawater. Nevertheless, the unusual chemical composition of the underlying massive basalt flow is believed to be reflected in that of the hyaloclastite. This is a powerful argument for interpreting the massive basalt as a surface flow rather than an intrusion. Glass alteration is different in the glassy margins of flows than in thicker glassy pillow rinds. Also, it appears to proceed faster in coarse- than fine-grained sediments.
Resumo:
A detailed study of the Fe-Ti oxides in four basalt samples-one from each of the four holes drilled into basement on Ocean Drilling Program Leg 115 (Sites 706, 707, 713, and 715) has been performed. Ilmenite is present only in samples from Sites 706 and 715. In the sample from Site 715, Ti-magnetite intergrowths are characteristic of subaerial (?) high-temperature oxy-exsolution; Ti-magnetite in the other three samples has experienced pervasive low-temperature oxidation to Ti-maghemite, as evidenced by the double-humped, irreversible, saturation magnetization vs. temperature (Js/T) curves. The bulk susceptibility of these samples, which are similar in terms of major element chemistry, varies by a factor of ~20 and correlates semiquantitatively with the modal abundance of Fe-Ti spinel, as determined by image analysis with an electron microprobe. The variation in Fe-Ti oxide abundance correlates with average grain size: fine-grained samples contain less Fe-Ti oxide. This prompts the speculation that the crystallization rate may also influence Fe-Ti oxide abundance.