999 resultados para Multisoliton states
Resumo:
A systematic study of neutron-rich even-even Fe isotopes with a neutron number from 32 to 42 is carried out by using the projected shell model. Calculations are performed up to the spin I=20 state. Irregularities found in the yrast spectra and in B (E2) values are discussed in terms of neutron excitations to the high-j orbital g(9/2). Furthermore, the neutron two-quasiparticle structure of a low-K negative-parity band and the proton two-quasiparticle structure of a high-K positive-parity band are predicted to exist near the yrast region. Our study reveals a soft nature for the ground state of N approximate to 40 isotopes and emphasizes the important role of the neutron g(9/2) orbital in determining the structure properties for both low- and high-spin states in these nuclei.
Resumo:
In this article we perform systematic calculations on low-lying states of 33 nuclei with A=202-212, using the nucleon pair approximation of the shell model. We use a phenomenological shell-model Hamiltonian that includes single-particle energies, monopole and quadrupole pairing interactions, and quadrupole-quadrupole interactions. The building blocks of our model space include one J=4 valence neutron pair, and one J=4,6,8 valence proton pair, in addition to the usual S and D pairs. We calculate binding energies, excitation energies, electric quadrupole and magnetic dipole moments of low-lying states, and E2 transition rates between low-lying states. Our calculated results are reasonably consistent with available experimental data. The calculated quadrupole moments and magnetic moments, many of which have not yet been measured for these nuclei, are useful for future experimental measurements.
Resumo:
The excited states in 22Mg have been investigated by the resonant elastic scattering of 21Na + p. A 4.0 MeV/nucleon 21Na beam was separated by the Center for Nuclear Study (CNS) radioactive ion beam separator (CRIB) and then used to bombard a thick (CH2)n target. The energy spectra of recoiled protons were measured at scattering angles of θc.m. ≈ 172◦ , 146◦, and 134◦, respectively. A wide energy-range of excitation function in 22Mg (up to Ex ∼ 8.9 MeV) was obtained simultaneously with a thick-target method, and a state at 7.06 MeV was newly observed. The resonant parameters were deduced from an R-matrix analysis of the center-of-mass (c.m.) differential cross-section data with a SAMMY-M6-BETA code. The astrophysical resonant reaction rate for the 18Ne(α,p)21Na reactionwas recalculated based on the present parameters. Generally speaking, the present rates are much smaller than the previous ones.
Resumo:
Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on gamma-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in (270)Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.
Resumo:
Using a shell model which is capable of describing the spectra of upper g(9/2)-shell nuclei close to the N = Z line, we study the structure of two isomeric states 7(+) and 21(+) in the odd-odd N = Z nucleus Ag-94. It is found that both isomeric states exhibit a large collectivity. The 7(+) state is oblately deformed, and is suggested to be a shape isomer in nature. The 21(+) state becomes isomeric because of level inversion of the 19(+) and 21(+) states due to core excitations across the N = Z = 50 shell gap. Calculation of spectroscopic quadrupole moment indicates clearly an enhancement in these states due to the core excitations. However, the present shell model calculation that produces the 19(+)-21(+) level inversion cannot accept the large-deformation picture of Mukha et al.
Resumo:
The electron impact excitation cross sections from the lowest metastable state 5p(5)6sJ = 2 to the six lowest excited states of the 5p(5)6p configuration of xenon are calculated systematically by using the fully relativistic distorted wave method. In order to discuss the effects of target state descriptions on the electron impact excitation cross sections, two correlation models are used to describe the target states based on the multiconfiguration Dirac-Fock (MCDF) method. It is found that the correlation effects play a very important role in low energy impact. For high energy impact, however, the cross sections are not sensitive to the description of the target states, but many more partial waves must be included.
Resumo:
The level structure of Pt-190 has been studied experimentally using the Yb-176 (O-18, 4n) reaction at beam energies of 88 and 95 MeV. gamma-gamma-t coincidence measurements were carried out. Based on the analysis of gamma-gamma coincidence relationships, the level scheme of Pt-190 is extended to high-spin states. A new structure built on the 3413.6 keV 14(+) state has been observed, and the vi(13/2)(-2) vh(9/2)(-1) vj (j = p(3/2) or f(5/2)) configuration is tentatively assigned to it.
Resumo:
The nucleus Cs-126 was investigated by means of in-beam gamma-ray spectroscopy techniques using the Nordball detector system at the Niels Bohr Institute. Excited states of Cs-126 were populated via the Cd-116(N-14, 4n)Cs-126 reaction at a beam energy of 65 MeV. The Cs-126 level scheme was considerably extended, especially at negative parity and about 40 new levels and 70 new transitions were added into the level scheme. The previously reported negative-parity rotational bands, built on pi g(7/2)circle times nu h(11/2),pi d(5/2)circle times nu h(11/2),pi h(11/2)circle times nu g(7/2), and pi h(11/2)circle times nu d(5/2) configurations, have been extended and evolve into bands involving rotationally aligned (pi h(11/2))(2) and (nu h(11/2))(2) quasiparticles. Two new rotational bands have been tentatively assigned the pi h(11/2)circle times nu s(1/2) and pi g(9/2)circle times nu h(11/2) configurations, respectively
Resumo:
High-spin states in Ce-139 have been populated using the Te-130(C-12, 3n) reaction at beam energy of 50MeV. The level scheme of Ce-139 has been revised and extended greatly up to E=5765.0keV. The level structure of Ce-139 shows typical characteristics of spherical nucleus, and the high-spin states were formed by the excitations of valence nucleons. Energies of the yrast and near yrast high-spin states in Ce-139 have been calculated by the empirical shell model, and the multi-quasiparticle nature of high-spin excited states has been discussed.
Resumo:
对149Sm(27Al,4n)172Re反应产生的172Re在束γ的实验数据进行了重新分析,新发现了可归属于172Re的3个转动带,由此建立了由6个转动带构成的172Re高自旋态能级纲图。依据相邻核的带结构知识和推转壳模型分析方法,对新发现的3个转动带的准粒子组态进行了指定,讨论了它们的转动特征。
Resumo:
在类氢离子能级相对论修正的基础上,依据屏蔽方法,给出了类氟体系基态电离能的一种表达式.依据原子序数9至20的元素类氟体系基态电离能的实验数据,使用Microcal Origin软件拟合出类氟体系非电离电子平均屏蔽系数与原子序数的函数关系,总结出类氟体系基态电离能遵从的关系式并进行了验证.推算了原子序数21至40的元素类氟离子的基态电离能.
Resumo:
Branching ratios and half-lives of alpha-decay to the ground-state rotational bands as well as the high-lying excited states of even-even nuclei have been calculated in the framework of the generalized liquid drop model (GLDM) and Royer's formula that we improved very recently. The calculation covers the isotopic chains from Ra to No in the mass regions 222 <= A <= 252 and 88 <= Z <= 102. The agreement between the calculated results and the experimental data indicates the reliability of investigating the properties of the unfavored alpha-decay with our method, especially the improved Royer's formula, which is very valuable for the analysis of experimental data. In addition, the dependence of half-lives on excitation energies of daughter nuclei has been investigated. It is shown that the influence on half-lives becomes stronger and stronger with the increase of the excitation energies.
Resumo:
In this work, we investigate the rescattering effects in the radiative decay Gamma(5S) -> eta(b) + gamma , which were suggested to be crucially important for understanding the anomalous largeness of the branching ratios B(Gamma(5S) -> Gamma(1S) + pi pi) and B(Gamma(5S) -> Gamma(1S) + eta). Our calculations show that the rescattering effects may enhance Gamma(Gamma(10860) -> eta(b) +gamma) by four orders, but the tetraquark structure does not. Recently the BABAR and CLEO collaborations have measured the mass of eta(b) and the branching ratios B(Gamma(2S) -> eta(b) +gamma), B(Gamma(3S) -> eta(b) +gamma). We hope that very soon, Gamma(10860) -> eta(b) + gamma) will be measured and it would be an ideal opportunity for testing whether the rescattering or the tetraquark structure is responsible for the anomaly of B(Gamma(5S) -> Gamma(nS) pi(+) pi(-))(n = 1, 2, 3)), i. e., the future measurements on the radiative decays of Gamma(5S) might be a touchstone of the two mechanisms.
Resumo:
The light-front quark model has been applied to calculate the transition matrix elements of heavy hadron decays. However, it is noted that using the traditional wave functions of the light-front quark model given in the literature, the theoretically determined decay constants of the Gamma(nS) obviously contradict the data. This implies that the wave functions must be modified. Keeping the orthogonality among the nS states and fitting their decay constants, we obtain a series of the wave functions for Gamma(nS). Based on these wave functions and by analogy with the hydrogen atom, we suggest a modified analytical form for the Gamma(nS) wave functions. Using the modified wave functions, the obtained decay constants are close to the experimental data. Then we calculate the rates of radiative decays of Gamma(nS) -> eta(b) + gamma. Our predictions are consistent with the experimental data on decays Gamma(3S) -> eta(b) + gamma within the theoretical and experimental errors.
Resumo:
The high-spin level structure of Au-188 has been investigated via the Yb-173(F-19,4n gamma) reaction at beam energies of 86 and 90 MeV. The previously reported level scheme has been modified and extended significantly. A new I-pi = 20(+) state associated with pi h(11/2)(-1) circle times nu i(13/2)(-2)h(9/2)(-1) configuration and two new rotational bands, one of which is built on the pi h(9/2) circle times nu i(13/2) configuration, have been identified. The prolate-to-oblate shape transition through triaxial shape has been proposed to occur around Au-188 for the pi h(9/2) circle times nu i(13/2) bands in odd-odd Au isotopes. Evidence for pi h(11/2)(-1) circle times nu i(13/2)(-1) structure of nonaxial shape with gamma < -70 degrees has been obtained by comparison with total Routhian surface and cranked-shell-model calculations.