929 resultados para Multilayer antenna
Resumo:
This paper presents the design of a new type of corner reflector (CR) antenna and the experimental investigation of its radiation characteristics. The design involves the addition of planar parallel periodic strips to the two sides of a CR antenna. The position, angular orientation, and number of strips have a notable effect on the H-plane radiation characteristics of the antenna. Certain configurations of the new antenna are capable of producing very sharp axial beams with gain on the order of 5 dB over the square corner reflector antenna. A configuration that can provide symmetric twin beams with enhanced gain and reduced half-power beam width (HPBW) is also presented.
Resumo:
Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.
Resumo:
With the advent of satellite communication and radio astronomy, the need for large and efficient reflector antennas had triggered a widespread investigation in reflector feed design techniques. Major improvements sought are reduction in spill-over, cross polarization losses and the enhancement of aperture efficiency. The search for such a feed culminated in the corrugated horn. The main idea behind the present work is to use the H-plane sectoral horns fitted with,corrugated flanges as feeds of a paraboloid and see how the secondary pattern of the reflector antenna varies with different parameters of the feed. An offset paraboloid is used as the secondary reflector in order to avoid the adverse effect of aperture ‘blocking by the feed horn structure on the secondary radiation pattern. The measurements were repeated for three different H-plane sectoral horns with the same set of corrugated flanges at various X-band frequencies. The following parameters of the whole system are studied: (a) Beam shaping. (b) Gain. (c) Variation of VSWR and (d) Cross polarization
Resumo:
The thesis relates to the investigations carried out on Rectangular Dielectric Resonator Antenna configurations suitable for Mobile Communication applications. The main objectives of the research are to: - numerically compute the radiation characteristics of a Rectangular DRA - identify the resonant modes - validate the numerically predicted data through simulation and experiment 0 ascertain the influence of the geometrical and material parameters upon the radiation behaviour of the antenna ° develop compact Rectangular DRA configurations suitable for Mobile Communication applications Although approximate methods exist to compute the resonant frequency of Rectangular DRA’s, no rigorous analysis techniques have been developed so far to evaluate the resonant modes. In this thesis a 3D-FDTD (Finite Difference Time Domain) Modeller is developed using MATLAB® for the numerical computation of the radiation characteristics of the Rectangular DRA. The F DTD method is a powerful yet simple algorithm that involves the discretimtion and solution of the derivative form of Maxwell’s curl equations in the time domain.
Resumo:
A slot line fed planar dipole antenna with a parasitic strip for wide band applications is presented. The presented antenna offers a 2:1 VSWR bandwidth from 1.66 to 2.71 GHz covering the DCS/ PCS/UMTS and IEEE 802.11b/g bands with a gain better than 6.5 dBi. The uniplanar design, simple feeding, and high gain make it a versatile antenna for wireless applications
Resumo:
A compact microstrip multiband antenna on a modified ground plane which can operate over the bands starting from 900 MHz to 5.35 GHz which includes the GSM (880-960) GPS (1568-1592 MHz), DCS (1710-1880 MHz), and PCS (1850- 1990 MHz). UMTS (1920-2170 MHz), IEEE 802.11 b/g (2400- 2484) and WLAN IEEE 802.11a band (5.15-5.35) is reported in this paper. The overall dimension of the antenna is 33 x 33 mm2 including the top patch with a dimension 22 x 22 mm2. The experimental results of the antenna are presented in this paper. The results confirm that the antenna exhibits wide band characteristics and covers 7 bands of operation
Resumo:
A printed compact coplanar waveguide fed triangular slot antenna for ultra wide band (UWB) communication systems is presented. The antenna comprises of a triangular slot loaded ground plane with a T shaped strip radiator to enhance the bandwidth and radiation. This compact antenna has a dimension of 26mm×26mm when printed on a substrate of dielectric constant 4.4 and thickness 1.6mm. Design equations are implemented and validated for different substrates. The pulse distortion is insignificant and is verified by the measured antenna performance with high signal fidelity and virtually steady group delay. The simulation and experiment reveal that the proposed antenna exhibits good impedance match, stable radiation patterns and constant gain and group delay over the entire operating band
Resumo:
A compact Co-Planar Waveguide (CPW) fed antenna operating at 2.4GHz with 300MHz 2:1 VSWR bandwidth is presented. Compared to a conventional quarter wavelength CPW fed monopole antenna, the aperture area reduction of the present antenna is 85%. The prototype antenna fabricated on a substrate of εr = 4.4 and thickness 1.6mm is only 22x10x1.6mm3. This much size reduction and impedance matching is achieved by adjusting the signal to ground plane separation and meandering the ground plane of a 50Ω CPW transmission line
Resumo:
Experimental investigations on Microstrip line excited Dielectric Resonator Antenna configurations suitable for Mobile Communication applications are reported. High permittivity (εrd = 48) resonator samples with different aspect ratios are employed for the study. Theoretical analysis performed using FDTD method is also presented.
Resumo:
The paper proposes an octagon shaped Microstrip Patch Antenna suitable for dual band applications. The striking features of this compact, planar antenna are sufficient isolation between the two operating bands and an area reduction of - 29% in comparison to a conventional circular patch antenna operating in the same band
Resumo:
In this paper, a multiband antenna using a novel fractal design is presented. The antenna structure is formed by inscribing a hexagonal slot within a circle. This base structure is then scaled and arranged within the hexagon along its sides without touching the outer structure. The proposed CPW fed, low profile antenna offers good performance in the 1.65 – 2.59 GHz, 4.16 – 4.52 GHz and 5.54 – 6.42 GHz bands and is suitable for GSM 1800/1900, Bluetooth, IMT advanced systems and upper WLAN applications. The antenna has been fabricated on a substrate of height 1.6 mm and εr = 4.4 and simulation and experimental results are found to be in good agreement
Resumo:
A compact coplanar waveguide-fed (CPW) monopole antenna for ultra-wideband wireless communication is presented. The proposed antenna comprises of a CPW-fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm 27 mm 1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7–12 GHz band, for S11 10 dB with a gain of 2.7–5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band
Resumo:
A compact coplanar waveguide (CPW)-fed uniplanar antenna with harmonic suppression characteristics is presented. The above characteristics are achieved by properly modifying the ground plane and adjusting the signal strip of an open-ended CPW-fed transmission line. The simulated and experimental characteristics of the antenna are presented, compared, and discussed.
Resumo:
A Coplanar waveguide fed compact planar monopole antenna with a modified ground plane is presented. Measured and simulated results reveal that the antenna operates in the Ultra Wide Band with almost constant group delay throughout the band. Developed design equations of the antenna are validated for different substrates. Time domain performance of the antenna is also discussed in order to assess its suitability for impulse radio applications
Resumo:
A dual band RFID applications in 800 900 MHz and 2400 MHz band is presented. The Asymmetric Coplanar Strip (ACS) fed antenna consists of inverted L shaped monopole with a capacitive loading to provide necessary impedance matching and current distribution. The antenna has wide bandwidth from 790 MHz tol050 MHz and from 2350 MHz to 2640 MHz coving the RFID UHF and Microwave frequencies. The uniplanar antenna having overall dimensions of 48 mm x 14 mm is printed on one side of a substrate of dielectric constant 4.4 and height 1.6 mm.