673 resultados para MtDNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine whether pathogenic mutations in mtDNA are involved in phenotypic expression of Alzheimer’s disease (AD), the transfer of mtDNA from elderly patients with AD into mtDNA-less (ρ0) HeLa cells was carried out by fusion of platelets or synaptosomal fractions of autopsied brain tissues with ρ0 HeLa cells. The results showed that mtDNA in postmortem brain tissue survives for a long time without degradation and could be rescued in ρ0 HeLa cells. Next, the cybrid clones repopulated with exogenously imported mtDNA from patients with AD were used for examination of respiratory enzyme activity and transfer of mtDNA with the pathogenic mutations that induce mitochondrial dysfunction. The presence of the mutated mtDNA was restricted to brain tissues and their cybrid clones that formed with synaptosomes as mtDNA donors, whereas no cybrid clones that isolated with platelets as mtDNA donors had detectable mutated mtDNA. However, biochemical analyses showed that all cybrid clones with mtDNA imported from platelets or brain tissues of patients with AD restored mitochondrial respiration activity to almost the same levels as those of cybrid clones with mtDNA from age-matched normal controls, suggesting functional integrity of mtDNA in both platelets and brain tissues of elderly patients with AD. These observations warrant the reassessment of the conventional concept that the accumulation of pathogenic mutations in mtDNA throughout the aging process is responsible for the decrease of mitochondrial respiration capacity with age and with the development of age-associated neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chondrichthyes (cartilaginous fishes) are commonly accepted as being sister group to the other extant Gnathostomata (jawed vertebrates). To clarify gnathostome relationships and to aid in resolving and dating the major piscine divergences, we have sequenced the complete mtDNA of the starry skate and have included it in phylogenetic analysis along with three squalomorph chondrichthyans—the common dogfish, the spiny dogfish, and the star spotted dogfish—and a number of bony fishes and amniotes. The direction of evolution within the gnathostome tree was established by rooting it with the most closely related non-gnathostome outgroup, the sea lamprey, as well as with some more distantly related taxa. The analyses placed the chondrichthyans in a terminal position in the piscine tree. These findings, which also suggest that the origin of the amniote lineage is older than the age of the oldest extant bony fishes (the lungfishes), challenge the evolutionary direction of several morphological characters that have been used in reconstructing gnathostome relationships. Applying as a calibration point the age of the oldest lungfish fossils, 400 million years, the molecular estimate placed the squalomorph/batomorph divergence at ≈190 million years before present. This dating is consistent with the occurrence of the earliest batomorph (skates and rays) fossils in the paleontological record. The split between gnathostome fishes and the amniote lineage was dated at ≈420 million years before present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms that underlie the maintenance of and increase in mutant mitochondrial DNA (mtDNA) are central to our understanding of mitochondrial disease. We have therefore developed a technique based on saponin permeabilisation that allows the study of mtDNA synthesis in intact cells. Permeabilisation of cells has been extensively used in an established method both for studying transcription and DNA replication in the nucleus and for measuring respiratory chain activities in mitochondria. We have quantitatively studied incorporation of radiolabelled DNA precursors into mtDNA in human cell lines derived from controls and from patients with mitochondrial DNA disease. Total cell DNA is extracted, restriction digested and Southern blotted, newly synthesised mtDNA being proportional to the label incorporated in each restriction band. A rate of synthesis can then be derived by estimating the relative steady-state mtDNA after probing with full-length mtDNA. Where co-existing mutant and wild-type mtDNA (heteroplasmy) can be distinguished using restriction digestion, their rates of synthesis can be compared within a single cell line. This will be particularly useful in elucidating the pathophysiology of mtDNA diseases in which the distribution of mutant and wild-type mtDNA in cell lines in patient tissues may evolve with time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human DNA ligase III gene encodes both nuclear and mitochondrial proteins. Abundant evidence supports the conclusion that the nuclear DNA ligase III protein plays an essential role in both base excision repair and homologous recombination. However, the role of DNA ligase III protein in mitochondrial genome dynamics has been obscure. Human tumor-derived HT1080 cells were transfected with an antisense DNA ligase III expression vector and clones with diminished levels of DNA ligase III activity identified. Mitochondrial protein extracts prepared from these clones had decreased levels of DNA ligase III relative to extracts from cells transfected with a control vector. Analysis of these clones revealed that the DNA ligase III antisense mRNA-expressing cells had reduced mtDNA content compared to control cells. In addition, the residual mtDNA present in these cells had numerous single-strand nicks that were not detected in mtDNA from control cells. Cells expressing antisense ligase III also had diminished capacity to restore their mtDNA to pre-irradiation levels following exposure to γ-irradiation. An antisense-mediated reduction in cellular DNA ligase IV had no effect on the copy number or integrity of mtDNA. This observaion, coupled with other evidence, suggests that DNA ligase IV is not present in the mitochondria and does not play a role in maintaining mtDNA integrity. We conclude that DNA ligase III is essential for the proper maintenance of mtDNA in cultured mammalian somatic cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The association of a particular mitochondrial DNA (mtDNA) mutation with different clinical phenotypes is a well-known feature of mitochondrial diseases. A simple genotype–phenotype correlation has not been found between mutation load and disease expression. Tissue and intercellular mosaicism as well as mtDNA copy number are thought to be responsible for the different clinical phenotypes. As disease expression of mitochondrial tRNA mutations is mostly in postmitotic tissues, studies to elucidate disease mechanisms need to be performed on patient material. Heteroplasmy quantitation and copy number estimation using small patient biopsy samples has not been reported before, mainly due to technical restrictions. In order to resolve this problem, we have developed a robust assay that utilizes Molecular Beacons to accurately quantify heteroplasmy levels and determine mtDNA copy number in small samples carrying the A8344G tRNALys mutation. It provides the methodological basis to investigate the role of heteroplasmy and mtDNA copy number in determining the clinical phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have attempted to determine whether loss of mtDNA and respiratory chain function result in apoptosis in vivo. Apoptosis was studied in embryos with homozygous disruption of the mitochondrial transcription factor A gene (Tfam) and tissue-specific Tfam knockout animals with severe respiratory chain deficiency in the heart. We found massive apoptosis in Tfam knockout embryos at embryonic day (E) 9.5 and increased apoptosis in the heart of the tissue-specific Tfam knockouts. Furthermore, mtDNA-less (ρ0) cell lines were susceptible to apoptosis induced by different stimuli in vitro. The data presented here provide in vivo evidence that respiratory chain deficiency predisposes cells to apoptosis, contrary to previous assumptions based on in vitro studies of cultured cells. These results suggest that increased apoptosis is a pathogenic event in human mtDNA mutation disorders. The finding that respiratory chain deficiency is associated with increased in vivo apoptosis may have important therapeutic implications for human disease. Respiratory chain deficiency and cell loss and/or apoptosis have been associated with neurodegeneration, heart failure, diabetes mellitus, and aging. Furthermore, chemotherapy and radiation treatment of cancer are intended to induce apoptosis in tumor cells. It would therefore be of interest to determine whether manipulation of respiratory chain function can be used to inhibit or enhance apoptosis in these conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a novel allele-specific primer elongation protocol using a DNA polymerase on oligonucleotide chips. Oligonucleotide primers carrying polymorphic sites at their free 3́end were covalently bound to glass slides. The generation of single-stranded targets of genomic DNA containing single nuclotide polymorphisms (SNPs) to be typed was achieved by an asymmetric PCR reaction or exonuclease treatment of phosphothioate (PTO)-modified PCR products. In the presence of DNA polymerase and all four dNTPs, with Cy3-dUTP replacing dTTP, allele-specific extension of the immobilized primers took place along a stretch of target DNA sequence. The yield of elongated products was increased by repeated reaction cycles. We performed multiplexed assays with many small DNA targets, or used single targets of up to 4.4 kb mitochondrial DNA (mtDNA) sequence to detect multiple SNPs in one reaction. The latter approach greatly simplifies preamplification of SNP-containing regions, thereby providing a framework for typing hundreds of mtDNA polymorphisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA was extracted from three fecal samples, more than 2,000 years old, from Hinds Cave, Texas. Amplification of human mtDNA sequences showed their affiliation with contemporary Native Americans, while sequences from pronghorn antelope, bighorn sheep, and cottontail rabbit allowed these animals to be identified as part of the diet of these individuals. Furthermore, amplification of chloroplast DNA sequences identified eight different plants as dietary elements. These archaic humans consumed 2–4 different animal species and 4–8 different plant species during a short time period. The success rate for retrieval of DNA from paleofeces is in strong contrast to that from skeletal remains where the success rate is generally low. Thus, human paleofecal remains represent a source of ancient DNA that significantly complements and may in some cases be superior to that from skeletal tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A maximum likelihood estimator based on the coalescent for unequal migration rates and different subpopulation sizes is developed. The method uses a Markov chain Monte Carlo approach to investigate possible genealogies with branch lengths and with migration events. Properties of the new method are shown by using simulated data from a four-population n-island model and a source–sink population model. Our estimation method as coded in migrate is tested against genetree; both programs deliver a very similar likelihood surface. The algorithm converges to the estimates fairly quickly, even when the Markov chain is started from unfavorable parameters. The method was used to estimate gene flow in the Nile valley by using mtDNA data from three human populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo1 mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo1 is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human history is punctuated by periods of rapid cultural change. Although archeologists have developed a range of models to describe cultural transitions, in most real examples we do not know whether the processes involved the movement of people or the movement of culture only. With a series of relatively well defined cultural transitions, the British Isles present an ideal opportunity to assess the demographic context of cultural change. Important transitions after the first Paleolithic settlements include the Neolithic, the development of Iron Age cultures, and various historical invasions from continental Europe. Here we show that patterns of Y-chromosome variation indicate that the Neolithic and Iron Age transitions in the British Isles occurred without large-scale male movements. The more recent invasions from Scandinavia, on the other hand, appear to have left a significant paternal genetic legacy. In contrast, patterns of mtDNA and X-chromosome variation indicate that one or more of these pre-Anglo-Saxon cultural revolutions had a major effect on the maternal genetic heritage of the British Isles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Domestic animals have played a key role in human history. Despite their importance, however, the origins of most domestic species remain poorly understood. We assessed the phylogenetic history and population structure of domestic goats by sequencing a hypervariable segment (481 bp) of the mtDNA control region from 406 goats representing 88 breeds distributed across the Old World. Phylogeographic analysis revealed three highly divergent goat lineages (estimated divergence >200,000 years ago), with one lineage occurring only in eastern and southern Asia. A remarkably similar pattern exists in cattle, sheep, and pigs. These results, combined with recent archaeological findings, suggest that goats and other farm animals have multiple maternal origins with a possible center of origin in Asia, as well as in the Fertile Crescent. The pattern of goat mtDNA diversity suggests that all three lineages have undergone population expansions, but that the expansion was relatively recent for two of the lineages (including the Asian lineage). Goat populations are surprisingly less genetically structured than cattle populations. In goats only ≈10% of the mtDNA variation is partitioned among continents. In cattle the amount is ≥50%. This weak structuring suggests extensive intercontinental transportation of goats and has intriguing implications about the importance of goats in historical human migrations and commerce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fossorial salamanders typically have elongate and attenuated heads and bodies, diminutive limbs, hands and feet, and extremely elongate tails. Batrachoseps from California, Lineatriton from eastern México, and Oedipina from southern México to Ecuador, all members of the family Plethodontidae, tribe Bolitoglossini, resemble one another in external morphology, which has evolved independently. Whereas Oedipina and Batrachoseps are elongate because there are more trunk vertebrae, a widespread homoplasy (parallelism) in salamanders, the genus Lineatriton is unique in having evolved convergently by an alternate “giraffe-neck” developmental program. Lineatriton has the same number of trunk vertebrae as related, nonelongated taxa, but individual trunk vertebrae are elongated. A robust phylogenetic hypothesis, based on sequences of three mtDNA genes, finds Lineatriton to be deeply nested within a clade characterized by generalized ecology and morphology. Lineatriton lineolus, the only currently recognized taxon in the genus, shows unanticipated genetic diversity. Surprisingly, geographically separated populations of L. lineolus are not monophyletic, but are sister taxa of different species of the morphologically generalized genus Pseudoeurycea. Lineatriton, long thought to be a unique monospecific lineage, is polyphyletic. Accordingly, the specialized morphology of Lineatriton displays homoplasy at two hierarchical levels: (i) with respect to other elongate lineages in the family (convergence), and (ii) within what is currently recognized as a single taxon (parallelism). These evolutionary events are of adaptive significance because to invade the lowland tropics salamanders must be either arboreal or fossorial; the repeated evolution of elongation and attenuation has led to multiple lowland invasions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selective manipulation of mitochondrial DNA (mtDNA) replication and expression within mammalian cells has proven difficult. One promising approach is to use peptide nucleic acid (PNA) oligomers, nucleic acid analogues that bind selectively to complementary DNA or RNA sequences inhibiting replication and translation. However, the potential of PNAs is restricted by the difficulties of delivering them to mitochondria within cells. To overcome this problem we conjugated a PNA 11mer to a lipophilic phosphonium cation. Such cations are taken up by mitochondria through the lipid bilayer driven by the membrane potential across the inner membrane. As anticipated, phosphonium–PNA (ph–PNA) conjugates of 3.4–4 kDa were imported into both isolated mitochondria and mitochondria within human cells in culture. This was confirmed by using an ion-selective electrode to measure uptake of the ph–PNA conjugates; by cell fractionation in conjunction with immunoblotting; by confocal microscopy; by immunogold-electron microscopy; and by crosslinking ph–PNA conjugates to mitochondrial matrix proteins. In all cases dissipating the mitochondrial membrane potential with an uncoupler prevented ph–PNA uptake. The ph–PNA conjugate selectively inhibited the in vitro replication of DNA containing the A8344G point mutation that causes the human mtDNA disease ‘myoclonic epilepsy and ragged red fibres’ (MERRF) but not the wild-type sequence that differs at a single nucleotide position. Therefore these modified PNA oligomers retain their selective binding to DNA and the lipophilic cation delivers them to mitochondria within cells. When MERRF cells were incubated with the ph–PNA conjugate the ratio of MERRF to wild-type mtDNA was unaffected, even though the ph–PNA content of the mitochondria was sufficient to inhibit MERRF mtDNA replication in a cell-free system. This unexpected finding suggests that nucleic acid derivatives cannot bind their complementary sequences during mtDNA replication. In summary, we have developed a new strategy for targeting PNA oligomers to mitochondria and used it to determine the effects of PNA on mutated mtDNA replication in cells. This work presents new approaches for the manipulation of mtDNA replication and expression, and will assist in the development of therapies for mtDNA diseases.