978 resultados para Motion path planning
Resumo:
We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smoluchowski equation valid for moderate to high damping constants. We derive that equation by perturbative solution of the Langevin equation and using functional derivative techniques.
Resumo:
This is a three volume set of the final report on the comprehensive plan of the Urban Planning Grant for the City of Urbandale. The report also includes important maps and charts.
Resumo:
The Rebuild Iowa Office (RIO) continues to coordinate the state‘s recovery effort from the storms, tornadoes and floods of 2008. Much has been accomplished since the Office‘s last quarterly report was issued in July 2010. State funding has been disbursed to help Iowans with unmet needs and housing. Local governments and entities are utilizing millions of federal dollars so thousands of disaster-impacted homeowners can be offered a buyout. More infrastructure projects are under construction and new neighborhoods are being built with mitigation efforts in mind. However, as Iowa continues to celebrate many successes along the road to recovery, it must also address the numerous challenges that are encountered along the path. Recovering from the state‘s largest disaster must be looked at as a marathon, not a sprint. Over the past three months, the RIO has especially remained focused on helping small business owners impacted by the 2008 disasters. Many disaster-affected businesses have reopened their doors, however their debt load continues to be overwhelming and many still struggle with the timeliness of the disbursement of funds. This report describes how programs and recent modifications are working to assist recovering businesses. This report contains updates on housing progress while outlining the complexities behind certain programs and the bottlenecks communities are facing due to strict federal guidelines for implementation. This following pages also describe how Iowa is implementing Smart Planning principles, publicizing flood awareness through outreach efforts and preparing a blueprint for the state to follow when future disasters occur. As always, the RIO recognizes and thanks the countless leaders and front-line workers from local, regional, state and federal government, businesses, non-profit organizations and private citizens that have provided input, support and leadership. Their dedication to Iowa‘s disaster recovery has made the plans and projects on the following pages possible.
Resumo:
The Capitol Planning Commission is authorized under Chapter 8A.371—378 of the Code of Iowa. “It shall be the duty of the commission to advise upon the location of statues, fountains and monuments and the placing of any additional buildings on the capitol grounds, the type of architecture and the type of construction of any new buildings to be erected on the state capitol grounds as now encompassed or as subsequently enlarged, and repairs and restoration thereof, and it shall be the duty of the officers, commissions, and councils charged by law with the duty of determining such questions to call upon the commission for such advice. “The commission shall, in cooperation with the director of the department of administrative services, develop and implement within the limits of its appropriation, a five-year modernization program for the capitol complex. “The commission shall annually report to the general assembly its recommendations relating to its duties under this section. The report shall be submitted to the chief clerk of the house and the secretary of the senate during the month of January.” —Code of Iowa, Chapter 8A.373
Resumo:
The Capitol Planning Commission is authorized under Chapter 8A.371—378 of the Code of Iowa. “It shall be the duty of the commission to advise upon the location of statues, fountains and monuments and the placing of any additional buildings on the capitol grounds, the type of architecture and the type of construction of any new buildings to be erected on the state capitol grounds as now encompassed or as subsequently enlarged, and repairs and restoration thereof, and it shall be the duty of the officers, commissions, and councils charged by law with the duty of determining such questions to call upon the commission for such advice. “The commission shall, in cooperation with the director of the department of administrative services, develop and implement within the limits of its appropriation, a five-year modernization program for the capitol complex. “The commission shall annually report to the general assembly its recommendations relating to its duties under this section. The report shall be submitted to the chief clerk of the house and the secretary of the senate during the month of January.” —Code of Iowa, Chapter 8A.373
Resumo:
The Capitol Planning Commission is authorized under Chapter 8A.371—378 of the Code of Iowa. “It shall be the duty of the commission to advise upon the location of statues, fountains and monuments and the placing of any additional buildings on the capitol grounds, the type of architecture and the type of construction of any new buildings to be erected on the state capitol grounds as now encompassed or as subsequently enlarged, and repairs and restoration thereof, and it shall be the duty of the officers, commissions, and councils charged by law with the duty of determining such questions to call upon the commission for such advice. “The commission shall, in cooperation with the director of the department of administrative services, develop and implement within the limits of its appropriation, a five-year modernization program for the capitol complex. “The commission shall annually report to the general assembly its recommendations relating to its duties under this section. The report shall be submitted to the chief clerk of the house and the secretary of the senate during the month of January.” —Code of Iowa, Chapter 8A.373
Resumo:
The Capitol Planning Commission is authorized under Chapter 8A.371—378 of the Code of Iowa. “It shall be the duty of the commission to advise upon the location of statues, fountains and monuments and the placing of any additional buildings on the capitol grounds, the type of architecture and the type of construction of any new buildings to be erected on the state capitol grounds as now encompassed or as subsequently enlarged, and repairs and restoration thereof, and it shall be the duty of the officers, commissions, and councils charged by law with the duty of determining such questions to call upon the commission for such advice. “The commission shall, in cooperation with the director of the department of administrative services, develop and implement within the limits of its appropriation, a five-year modernization program for the capitol complex. “The commission shall annually report to the general assembly its recommendations relating to its duties under this section. The report shall be submitted to the chief clerk of the house and the secretary of the senate during the month of January.” —Code of Iowa, Chapter 8A.373
Resumo:
This 2011 Annual Report further summarizes the work of the Commission during the last year and provides planning recommendations for the future of the Capitol Complex. Please note that Iowa Code Chapter 8A.373 provides that before any physical changes are made to the state capitol complex "it shall be the duty of the officers, commissions, and councils charged by law with the duty of determining such questions to call upon" the Capitol Planning Commission for advice. The Capitol Planning Commission members, as well as DAS Staff, welcome the opportunity to discuss future projects at the request of any legislator.
Resumo:
We compute nonequilibrium correlation functions about the stationary state in which the fluid moves as a consequence of tangential stresses on the liquid surface, related to a varying surface tension (thermocapillary motion). The nature of the stationary state makes it necessary to take into account that the system is finite. We then extend a previous analysis on fluctuations about simple stationary states to include some effects related to the finite size of the sample.
Resumo:
There is a great lack of information from soil surveys in the southern part of the State of Amazonas, Brazil. The use of tools such as geostatistics may improve environmental planning, use and management. In this study, we aimed to use scaled semivariograms in sample design of soil physical properties of some environments in Amazonas. We selected five areas located in the south of the state of Amazonas, Brazil, with varied soil uses, such as forest, archaeological dark earth (ADE), pasture, sugarcane cropping, and agroforestry. Regular mesh grids were set up in these areas with 64 sample points spaced at 10 m from each other. At these points, we determined the particle size composition, soil resistance to penetration, moisture, soil bulk density and particle density, macroporosity, microporosity, total porosity, and aggregate stability in water at a depth of 0.00-0.20 m. Descriptive and geostatistical analyses were performed. The sample density requirements were lower in the pasture area but higher in the forest. We concluded that managed-environments had differences in their soil physical properties compared to the natural forest; notably, the soil in the ADE environment is physically improved in relation to the others. The physical properties evaluated showed a structure of spatial dependence with a slight variability of the forest compared to the others. The use of the range parameter of the semivariogram analysis proved to be effective in determining an ideal sample density.
Resumo:
The lack of information concerning the variability of soil properties has been a major concern of researchers in the Amazon region. Thus, the aim of this study was to evaluate the spatial variability of soil chemical properties and determine minimal sampling density to characterize the variability of these properties in five environments located in the south of the State of Amazonas, Brazil. The five environments were archaeological dark earth (ADE), forest, pasture land, agroforestry operation, and sugarcane crop. Regular 70 × 70 m mesh grids were set up in these areas, with 64 sample points spaced at 10 m distance. Soil samples were collected at the 0.0-0.1 m depth. The chemical properties of pH in water, OM, P, K, Ca, Mg, H+Al, SB, CEC, and V were determined at these points. Data were analyzed by descriptive and geostatistical analyses. A large part of the data analyzed showed spatial dependence. Chemical properties were best fitted to the spherical model in almost all the environments evaluated, except for the sugarcane field with a better fit to the exponential model. ADE and sugarcane areas had greater heterogeneity of soil chemical properties, showing a greater range and higher sampling density; however, forest and agroforestry areas had less variability of chemical properties.
Resumo:
PURPOSE: Peptide receptor radionuclide therapy (PRRT) delivers high absorbed doses to kidneys and may lead to permanent nephropathy. Reliable dosimetry of kidneys is thus critical for safe and effective PRRT. The aim of this work was to assess the feasibility of planning PRRT based on 3D radiobiological dosimetry (3D-RD) in order to optimize both the amount of activity to administer and the fractionation scheme, while limiting the absorbed dose and the biological effective dose (BED) to the renal cortex. METHODS: Planar and SPECT data were available for a patient examined with (111)In-DTPA-octreotide at 0.5 (planar only), 4, 24, and 48 h post-injection. Absorbed dose and BED distributions were calculated for common therapeutic radionuclides, i.e., (111)In, (90)Y and (177)Lu, using the 3D-RD methodology. Dose-volume histograms were computed and mean absorbed doses to kidneys, renal cortices, and medullae were compared with results obtained using the MIRD schema (S-values) with the multiregion kidney dosimetry model. Two different treatment planning approaches based on (1) the fixed absorbed dose to the cortex and (2) the fixed BED to the cortex were then considered to optimize the activity to administer by varying the number of fractions. RESULTS: Mean absorbed doses calculated with 3D-RD were in good agreement with those obtained with S-value-based SPECT dosimetry for (90)Y and (177)Lu. Nevertheless, for (111)In, differences of 14% and 22% were found for the whole kidneys and the cortex, respectively. Moreover, the authors found that planar-based dosimetry systematically underestimates the absorbed dose in comparison with SPECT-based methods, up to 32%. Regarding the 3D-RD-based treatment planning using a fixed BED constraint to the renal cortex, the optimal number of fractions was found to be 3 or 4, depending on the radionuclide administered and the value of the fixed BED. Cumulative activities obtained using the proposed simulated treatment planning are compatible with real activities administered to patients in PRRT. CONCLUSIONS: The 3D-RD treatment planning approach based on the fixed BED was found to be the method of choice for clinical implementation in PRRT by providing realistic activity to administer and number of cycles. While dividing the activity in several cycles is important to reduce renal toxicity, the clinical outcome of fractionated PRRT should be investigated in the future.
Resumo:
Report on a review of selected application controls over the Iowa State University of Science and Technology Facilities Planning and Management - Facilities Administrative Management Information System for the period of April 18, 2011 through May 16, 2011