999 resultados para Mohl, Moritz vonMohl, Moritz vonMoritzMohlvon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Acetabular anatomy on AP pelvic radiographsdepends on pelvic orientation during radiograph acquisition. However, not all parameters may change to a clinically relevant degree with differences in pelvic orientation. This issue may influence the diagnosis of acetabular pathologies and planning of corrective acetabular surgery (reorientation or rim trimming). However, to this point, it has not been well characterized. Questions/purposes We asked (1) which radiographic parameters change in a clinical setting when normalized to neutral pelvic orientation; (2) which parameters do not change in an experimental setting when the pelvis is experimentally rotated/tilted; and (3) which of these changes are ‘‘ultimately’’ relevant based on a prespecified definition of relevance. Methods In a clinical setup, 11 hip parameters were evaluated in 101 patients (126 hips) by two observers and the interobserver difference was calculated. All parameters were normalized to an anatomically defined neutral pelvic orientation with the help of a lateral pelvic radiograph and specific software. Differences between nonnormalized and normalized values were calculated (effect of normalization). In an experimental setup involving 20 cadaver pelves (40 hips), the maximum range for each parameter was computed with the pelvis rotated (range, −12° to 12°) and tilted (range, −24° to 24°). ‘‘Ultimately’’ relevant changes existed if the effect of normalization exceeded the interobserver difference (eg, 37% versus 6% for prevalence of a positive crossover sign) and/or the maximum experimental range exceeded 1 SD of interobserver difference (eg, 27% versus 6% for anterior acetabular coverage). Results In the clinical setup, all parameters except the ACM angle and craniocaudal acetabular coverage changed when being normalized, eg, effect of normalization for lateral center-edge angle, acetabular index, and sharp angle ranged from −5° to 4° (p values < 0.029). In the experimental setup, five parameters showed no major changes, whereas six parameters did change (all p values < 0.001). Ultimately relevant changes were found for anteroposterior acetabular coverage, retroversion index, and prevalence of a positive crossover or posterior wall sign. Conclusions Lateral center-edge angle, ACM angle, Sharp angle, acetabular and extrusion index, and craniocaudal acetabular coverage showed no relevant changes with varying pelvic orientation and can therefore be acquired independent from individual pelvic tilt and rotation in clinical practice. In contrast, anteroposterior acetabular coverage, crossover and posterior wall sign, and retroversion index call for specific efforts that address individual pelvic orientation such as computer-assisted evaluation of radiographs. Level of Evidence Level III, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Both acetabular undercoverage (hip dysplasia) and overcoverage (pincer-type femoroacetabular impingement) can result in hip osteoarthritis. In contrast to undercoverage, there is a lack of information on radiographic reference values for excessive acetabular coverage. Questions/purposes (1) How do common radiographic hip parameters differ in hips with a deficient or an excessive acetabulum in relation to a control group; and (2) what are the reference values determined from these data for acetabular under- and overcoverage? Methods We retrospectively compared 11 radiographic parameters describing the radiographic acetabular anatomy among hip dysplasia (26 hips undergoing periacetabular osteotomy), control hips (21 hips, requiring no rim trimming during surgical hip dislocation), hips with overcoverage (14 hips, requiring rim trimming during surgical hip dislocation), and hips with severe overcoverage (25 hips, defined as having acetabular protrusio). The hips were selected from a patient cohort of a total of 593 hips. Radiographic parameters were assessed with computerized methods on anteroposterior pelvic radiographs and corrected for neutral pelvic orientation with the help of a true lateral radiograph. Results All parameters except the crossover sign differed among the four study groups. From dysplasia through control and overcoverage, the lateral center-edge angle, acetabular arc, and anteroposterior/craniocaudal coverage increased. In contrast, the medial center-edge angle, extrusion/acetabular index, Sharp angle, and prevalence of the posterior wall sign decreased. The following reference values were found: lateral center-edge angle 23° to 33°, medial center-edge angle 35° to 44°, acetabular arc 61° to 65°, extrusion index 17% to 27%, acetabular index 3° to 13°, Sharp angle 38° to 42°, negative crossover sign, positive posterior wall sign, anterior femoral head coverage 15% to 26%, posterior femoral head coverage 36% to 47%, and craniocaudal coverage 70% to 83%. Conclusions These acetabular reference values define excessive and deficient coverage. They may be used for radiographic evaluation of symptomatic hips, may offer possible predictors for surgical outcomes, and serve to guide clinical decision-making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

zus.gest. von M. Steinschneider

Relevância:

20.00% 20.00%

Publicador:

Resumo:

von Michael Sachs. Mit Beitr. von Moritz Veit

Relevância:

20.00% 20.00%

Publicador:

Resumo:

von M. Steinschneider

Relevância:

20.00% 20.00%

Publicador:

Resumo:

von M. Steinschneider

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Moritz Steinschneider]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kap. IX fehlt auch in der Druckvorlage

Relevância:

20.00% 20.00%

Publicador:

Resumo:

von M. Henle

Relevância:

20.00% 20.00%

Publicador:

Resumo:

componirt ... von M. Rosenhaupt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

comp. von M. Rosenhaupt

Relevância:

20.00% 20.00%

Publicador:

Resumo:

von Moritz Wallerstein