993 resultados para Mixed-layer salinity


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Planktic foraminiferal assemblages vary in response to seasonal fluctuations of hydrographic properties, between water masses, and after periodical changes and episodic events (e.g. reproduction, storms). Distinct annual variability of the planktic foraminiferal flux is also known from sediment trap data. In this paper we discuss the short-term impacts on interannual flux rates based on data from opening-closing net hauls obtained between the ocean surface and 500 m water depth. Data were recorded during April, May, June, and August at around 47°N, 20°W (BIOTRANS) in 1988, 1989, 1990, 1992, 1993, and during May 1989 and 1992 at 57°N, 20-22°W. Species assemblages closely resemble each other when comparing the mixed layer fauna with the fauna of the upper 100 m and the upper 500 m of the water column. In addition, species assemblages >100 µm are almost indistinguishable from assemblages that are >125 µm in test size. The standing stock of planktic foraminifers at BIOTRANS can vary by more than one order of magnitude over different years; however, species assemblages may be similar when comparing corresponding seasons. Early summer assemblages (June) are distinctly different from late summer assemblages (August). Significant variations in the species composition during spring (April/May) are independent of the mixed layer depth. Spring assemblages are characterized by high numbers of Globigerinita glutinata. In particular, day-to-day variations of the number of specimens and in species composition may have the same order of magnitude as interannual variations. This appears to be independent of the reproduction cycle. Species assemblages at 47°N and 57°N are similar during spring, although surface water temperatures and salinities differ by up to 10°C and 0.7 (PSU). We suggest that the main factors controlling the planktic foraminiferal fauna are the trophic properties in the upper ocean productive layer. Planktic foraminiferal carbonate flux as calculated from assemblages reveals large seasonal variations, a quasi-annual periodicity in flux levels, and substantial differences in timing and magnitude of peak fluxes. At the BIOTRANS station, the average annual planktic foraminiferal CaCO3 fluxes at 100 and 500 m depth are estimated to be 22.4 and 10.0 g/m**2/yr, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sorption of volatile hydrocarbon gases (VHCs) to marine sediments is a recognized phenomenon that has been investigated in the context of petroleum exploration. However, little is known about the biogeochemistry of sorbed methane and higher VHCs in environments that are not influenced by thermogenic processes. This study evaluated two different extraction protocols for sorbed VHCs, used high pressure equipment to investigate the sorption of methane to pure clay mineral phases, and conducted a geochemical and mineralogical survey of sediment samples from different oceanographic settings and geochemical regimes that are not significantly influenced by thermogenic gas. Extraction of sediments under alkaline conditions yielded higher concentrations of sorbed methane than the established protocol for acidic extraction. Application of alkaline extraction in the environmental survey revealed the presence of substantial amounts of sorbed methane in 374 out of 411 samples (91%). Particularly high amounts, up to 2.1 mmol kg**-1 dry sediment, were recovered from methanogenic sediments. Carbon isotopic compositions of sorbed methane suggested substantial contributions from biogenic sources, both in sulfate-depleted and sulfate-reducing sediments. Carbon isotopic relationships between sorbed and dissolved methane indicate a coupling of the two pools. While our sorption experiments and extraction conditions point to an important role for clay minerals as sorbents, mineralogical analyses of marine sediments suggest that variations in mineral composition are not controlling variations in quantities of sorbed methane. We conclude that the distribution of sorbed methane in sediments is strongly influenced by in situ production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Variations in primary productivity (PP) have been reconstructed in eutrophic, mesotrophic and oligotrophic parts of the Arabian Sea over the past 135 000 years applying principal component analysis and transfer function to planktic foraminiferal assemblages. Temporal variation in paleoproductivity is most pronounced in the mesotrophic northern (NAST site) and oligotrophic eastern (EAST site) Arabian Sea, and comparatively weak in the western eutrophic GeoB 3011-1 site in the upwelling area off Oman. Higher PP during interglacials (250-320 g C/m**2 year) than during cold stages (210-270 g C/m**2 year) at GeoB 3011-1 could have been caused by a strengthened upwelling during intensified summer monsoons and increased wind velocities. At NAST, during interglacials, PP is estimated to exceed g C/m**2 year 1, and during glacials to be as low as 140-180 g C/m**2 year. These fluctuations may result from a (1) varying impact of filaments that are associated to the Oman coastal upwelling, and (2) from open-ocean upwelling associated to the Findlater Jet. At EAST, highest productivity of about 380 g C/m**2 year is documented for the transition from isotope stage 5 to 4. We suggest that during isotope stages 2, 4, 5.2, the transition 5/4, and the end of stage 6, deep mixing of surface waters was caused by moderate to strong winter monsoons, and induced an injection of nutrients into the euphotic layer leading to enhanced primary production. The deepening of the mixed layer during these intervals is confirmed by an increased concentration of deep-dwelling planktic foraminiferal species. A high-productivity event in stage 3, displayed by estimated PP values, and by planktic foraminifera and radiolaria flux and accumulation rate, likely resulted from a combination of intensified SW monsoons with moderate to strong NE monsoons. Differential response of Globigerina bulloides, Globigerinita glutinata and mixed layer species to the availability of food is suited to subdivide productivity regimes on a temporal and spatial scale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At the request of the Leg 80 scientific party, selected samples of Cretaceous age were processed by X-ray diffraction at the mineralogy laboratories at the Ecole des Mines (Albian to Late Cretaceous samples) and at the Institut de Géologie at Dijon (Barremian samples). The results were used in developing the lithostratigraphy and sedimentology discussed in this volume by Rat et al. 1985 (doi:10.2973/dsdp.proc.80.140.1985) in their study of Barremian-Albian paleoenvironment, by Graciansky and Gillot in their study of Albian and Cenomanian limestones, and by Graciansky and Bourbon in their paleoenvironmental reconstructions for the Late Cretaceous chalks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.