953 resultados para Mixed-acid Fermentation
Resumo:
Background The primary health care sector delivers the majority of health care in western countries through small, community-based organizations. However, research into these healthcare organizations is limited by the time constraints and pressure facing them, and the concern by staff that research is peripheral to their work. We developed Q-RARA—Qualitative Rapid Appraisal, Rigorous Analysis—to study small, primary health care organizations in a way that is efficient, acceptable to participants and methodologically rigorous. Methods Q-RARA comprises a site visit, semi-structured interviews, structured and unstructured observations, photographs, floor plans, and social scanning data. Data were collected over the course of one day per site and the qualitative analysis was integrated and iterative. Results We found Q-RARA to be acceptable to participants and effective in collecting data on organizational function in multiple sites without disrupting the practice, while maintaining a balance between speed and trustworthiness. Conclusions The Q-RARA approach is capable of providing a richly textured, rigorous understanding of the processes of the primary care practice while also allowing researchers to develop an organizational perspective. For these reasons the approach is recommended for use in small-scale organizations both within and outside the primary health care sector.
Resumo:
A numerical study is carried out to investigate the transition from laminar to chaos in mixed convection heat transfer inside a lid-driven trapezoidal enclosure. In this study, the top wall is considered as isothermal cold surface, which is moving in its own plane at a constant speed, and a constant high temperature is provided at the bottom surface. The enclosure is assumed to be filled with water-Al2O3 nanofluid. The governing Navier–Stokes and thermal energy equations are expressed in non-dimensional forms and are solved using Galerkin finite element method. Attention is paid in the present study on the pure mixed convection regime at Richandson number, Ri = 1. The numerical simulations are carried out over a wide range of Reynolds (0.1 ≤ Re ≤ 103) and Grashof (0.01 ≤ Gr ≤ 106) numbers. Effects of the presence of nanofluid on the characteristics of mixed convection heat transfer are also explored. The average Nusselt numbers of the heated wall are computed to demonstrate the influence of flow parameter variations on heat transfer. The corresponding change of flow and thermal fields is visualized from the streamline and the isotherm contour plots.
Resumo:
Lewis’s Medical-Surgical Nursing: Assessment and Management of Clinical Problems, 4th Edition is the most comprehensive go-to reference for essential information about all aspects of professional nursing care of patients. Using the nursing process as a framework for practice, the fourth edition has been extensively revised to reflect the rapid changing nature of nursing practice and the increasing focus on key nursing care priorities. Building on the strengths of the third Australian and New Zealand edition and incorporating relevant global nursing research and practice from the prominent US title Medical-Surgical Nursing, 9Th Edition, Lewis’s Medical-Surgical Nursing, 4th Edition is an essential resource for students seeking to understand the role of the professional nurse in the contemporary health environment.
Resumo:
Objectives To evaluate relationships between self-reported physical activity, proportions of long-chain omega-3 polyunsaturated fatty acids (LCn3) in erythrocyte content (percentage of total fatty acids) and risk of mild cognitive impairment (MCI) in older adults. Method A cross-sectional study was conducted. Community-dwelling male and female (n = 84) participants over the age of 65 years with and without MCI were tested for erythrocyte proportions of the LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Physical activity was measured using a validated questionnaire. Results The interaction between erythrocyte EPA, but not DHA, and increased physical activity was associated with increased odds of a non-MCI classification. Conclusion An interaction between physical activity and erythrocyte EPA content (percentage of fatty acids) significantly predicted MCI status in older adults. Randomised control trials are needed to examine the potential for supplementation with EPA in combination with increased physical activity to mitigate the risk of MCI in ageing adults.
Resumo:
Busway stations are the interface between passengers and services. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses manoeuvring into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. Further, some systems include operation where express buses do not observe the station, resulting in a proportion of non-stopping buses. It is important to understand the operation of the station under this type of operation and its effect on busway capacity. This study uses microscopic simulation to treat the busway station operation and to analyse the relationship between station potential capacity where all buses stop, and Mixed Potential Capacity where there is a mixture of stopping and non-stopping buses. First, the micro simulation technique is used to analyze the All Stopping Buses (ASB) scenario and then statistical model is tuned and calibrated for a specified range of controlled scenarios of dwell time characteristics Subsequently, a mathematical model is developed for Mixed Stopping Buses (MSB) Potential Capacity by introducing different proportions of express (or non-stopping) buses. The proposed models for a busway station bus capacity provide a better understanding of operation and are useful to transit agencies in busway planning, design and operation.
Resumo:
Busway stations are the interface between passengers and services. The station is crucial to line operation as it is typically the only location where buses can pass each other. Congestion may occur here when buses manoeuvring into and out of the platform lane interfere with bus flow, or when a queue of buses forms upstream of the platform lane blocking the passing lane. Further, some systems include operation where express buses do not observe the station, resulting in a proportion of non-stopping buses. It is important to understand the operation of the station under this type of operation and its effect on busway capacity. This study uses microscopic simulation to treat the busway station operation and to analyse the relationship between station potential capacity where all buses stop, and Mixed Potential Capacity where there is a mixture of stopping and non-stopping buses. First, the micro simulation technique is used to analyze the All Stopping Buses (ASB) scenario and then statistical model is tuned and calibrated for a specified range of controlled scenarios of dwell time characteristics Subsequently, a mathematical model is developed for Mixed Stopping Buses (MSB) Potential Capacity by introducing different proportions of express (or non-stopping) buses. The proposed models for a busway station bus capacity provide a better understanding of operation and are useful to transit agencies in busway planning, design and operation.
Resumo:
The need to attract and retain a high calibre cadre of public servants today has resulted in a renaissance of interest in public service motivation (PSM) within public management literature. This article outlines a study of PSM with graduate employees within an Australian public sector. The study extends our understanding of PSM by adopting a longitudinal, mixed method design, including surveys and individual interviews, to consider the effects of socialisation on levels of PSM. Results show an organisation's mission and values do not affect individual PSM while work type and communication style is vital and organisational socialisation can provide a negative influence.
Resumo:
BACKGROUND The increasing cost of fossil fuels as well as the escalating social and industrial awareness of the environmental impacts associated with the use of fossil fuels has created the need for more sustainable fuel options. Bioethanol, produced from renewable biomass such as sugar and starch materials, is believed to be one of these options, and it is currently being harnessed extensively. However, the utilization of sugar and starch materials as feedstocks for bioethanol production creates a major competition with the food market in terms of land for cultivation, and this makes bioethanol from these sources economically less attractive. RESULT This study explores the suitability of microalgae (Chlorococum sp.) as a substrate for bioethanol production via yeast (Saccharomycesbayanus)under different fermentation conditions. Results show a maximum ethanol concentration of 3.83 g L -1 obtained from 10 g L-1 of lipid-extracted microalgae debris. CONCLUSION This productivity level (∼38% w/w), which is in keeping with that of current production systems endorses microalgae as a promising substrate for bioethanol production.
Resumo:
Background A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of a malaria DNA vaccine is presented. A 40 kHz ultrasonic atomization device was used to create the microparticles from a feedstock containing 5 volumes of 0.5% w/v PLGA in acetone and 1 volume of condensed DNA which was fed at a flow rate of 18ml h-1. The plasmid DNA vectors encoding a malaria protein were condensed with a cationic polymer before atomization. Results High levels of gene expression in vitro were observed in COS-7 cells transfected with condensed DNA at a nitrogen to phosphate (N/P) ratio of 10. At this N/P ratio, the condensed DNA exhibited a monodispersed nanoparticle size (Z-average diameter of 60.8 nm) and a highly positive zeta potential of 38.8mV. The microparticle formulations of malaria DNA vaccine were quality assessed and it was shown that themicroparticles displayed high encapsulation efficiencies between 82-96% and a narrow size distribution in the range of 0.8-1.9 μm. In vitro release profile revealed that approximately 82% of the DNA was released within 30 days via a predominantly diffusion controlledmass transfer system. Conclusions This ultrasonic atomization technique showed excellent particle size reproducibility and displayed potential as an industrially viable approach for the formulation of controlled release particles.
Resumo:
The recognition of the potential efficacy of plasmid DNA (pDNA) molecules as vectors in the treatment and prevention of emerging diseases has birthed the confidence to combat global pandemics. This is due to the close-to-zero safety concern associated with pDNA vectors compared to viral vectors in cell transfection and targeting. Considerable attention has been paid to the potential of pDNA vectors but comparatively less thought has been given to the practical challenges in producing large quantities to meet current rising demands. A pilot-scale fermentation scheme was developed by employing a stoichiometrically-designed growth medium whose exceptional plasmid yield performance was attested in a shake flask environment for pUC19 and pEGFP-N1 transformed into E. coliDH5α and E. coliJM109, respectively. Batch fermentation of E. coliDH5α-pUC19 employing the stoichiometric medium displayed a maximum plasmid volumetric and specific yield of 62.6 mg/L and 17.1 mg/g (mg plasmid/g dry cell weight), respectively. Fed-batch fermentation of E. coliDH5α-pUC19 on a glycerol substrate demonstrated one of the highest ever reported pilot-scale plasmid specific yield of 48.98 mg/g and a volumetric yield of 0.53 g/L. The attainment of high plasmid specific yields constitutes a decrease in plasmid manufacturing cost and enhances the effectiveness of downstream processes by reducing the proportion of intracellular impurities. The effect of step-rise temperature induction was also considered to maximize ColE1-origin plasmid replication.
Resumo:
The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.
Resumo:
This study evaluated the complexity of calcium ion exchange with sodium exchanged weak acid cation resin (DOW MAC-3). Exchange equilibria recorded for a range of different solution normalities revealed profiles which were represented by conventional “L” or “H” type isotherms at low values of equilibrium concentration (Ce) of calcium ions, plus a superimposed region of increasing calcium uptake was observed at high Ce values. The loading of calcium ions was determined to be ca. 53.5 to 58.7 g/kg of resin when modelling only the sorption curve created at low Ce values,which exhibited a well-defined plateau. The calculated calcium ion loading capacity for DOWMAC-3 resin appeared to correlate with the manufacturer's recommendation. The phenomenon of super equivalent ion exchange (SEIX) was observed when the “driving force” for the exchange process was increased in excess of 2.25 mmol calcium ions per gram of resin in the starting solution. This latter event was explained in terms of displacement of sodium ions from sodium hydroxide solution which remained in the resin bead following the initial conversion of the as supplied “H+” exchanged resin sites to the “Na+” version required for softening studies. Evidence for hydrolysis of a small fraction of the sites on the sodium exchanged resin surface was noted. The importance of carefully choosing experimental parameters was discussed especially in relation to application of the Langmuir–Vageler expression. This latter model which compared the ratio of the initial calcium ion concentration in solution to resin mass, versus final equilibrium loading of the calcium ions on the resin; was discovered to be an excellent means of identifying the progress of the calcium–sodium ion exchange process. Moreover, the Langmuir–Vageler model facilitated standardization of various calcium–sodium ion exchange experiments which allowed systematic experimental design.
Resumo:
The exchange of iron species from iron (III) chloride solutions with a strong acid cation resin has been investigated in relation to a variety of water and wastewater applications. A detailed equilibrium isotherm analysis was conducted wherein models such as Langmuir Vageler, Competitive Langmuir, Freundlich, Temkin, Dubinin Astakhov, Sips and Brouers-Sotolongo were applied to the experimental data. An important conclusion was that both the bottle-point method and solution normality used to generate the ion exchange equilibrium information influenced which sorption model fitted the isotherm profiles optimally. Invariably, the calculated value for the maximum loading of iron on strong acid cation resin was substantially higher than the value of 47.1 g/kg of resin which would occur if one Fe3+ ion exchanged for three “H+” sites on the resin surface. Consequently, it was suggested that above pH 1, various iron complexes sorbed to the resin in a manner which required less than 3 sites per iron moiety. Column trials suggested that the iron loading was 86.6 g/kg of resin when 1342 mg/L Fe (III) ions in water were flowed at 31.7 bed volumes per hour. Regeneration with 5 to 10 % HCl solutions reclaimed approximately 90 % of exchange sites.
Resumo:
This paper relates to the importance of impact of the chosen bottle-point method when conducting ion exchange equilibria experiments. As an illustration, potassium ion exchange with strong acid cation resin was investigated due to its relevance to the treatment of various industrial effluents and groundwater. The “constant mass” bottle-point method was shown to be problematic in that depending upon the resin mass used the equilibrium isotherm profiles were different. Indeed, application of common equilibrium isotherm models revealed that the optimal fit could be with either the Freundlich or Temkin equations, depending upon the conditions employed. It could be inferred that the resin surface was heterogeneous in character, but precise conclusions regarding the variation in the heat of sorption were not possible. Estimation of the maximum potassium loading was also inconsistent when employing the “constant mass” method. The “constant concentration” bottle-point method illustrated that the Freundlich model was a good representation of the exchange process. The isotherms recorded were relatively consistent when compared to the “constant mass” approach. Unification of all the equilibrium isotherm data acquired was achieved by use of the Langmuir Vageler expression. The maximum loading of potassium ions was predicted to be at least 116.5 g/kg resin.
Resumo:
This thesis investigated the complexity of busway operation with stopping and non-stopping buses using field data and microscopic simulation modelling. The proposed approach made significant recommendations to transit authorities to achieve the most practicable system capacity for existing and new busways. The empirical equations developed in this research and newly introduced analysis methods will be ideal tools for transit planners to achieve optimal reliability of busways.