911 resultados para Mismatch Negativity (MMN)
Resumo:
Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.
Resumo:
The hepato-pulmonary syndrome (HPS) is characterized by a combination of liver disease and pulmonary gas exchange abnormalities with arterial hypoxemia, intrapulmonary vasodilatation and arteriovenous shunting in the absence of intrinsic cardiopulmonary disease. The course of the disease is typically progressive. The mortality rate correlates with the pulmonary shunt volume and the degree of hypoxemia at room air. While the patho-physiology of HPS is still not fully understood, a multifactorial etiology is favored. Apart from functional intrapulmonary arteriovenous shunts which appear to represent a major factor in the development of HPS, both ventilation-perfusion mismatch and limited oxygen diffusion contribute to the HPS. Regarding its clinical appearance, pulmonary and hepatic symptoms have to be distinguished. Contrast echocardiography is the primary diagnostic tool. Symptomatically, hypoxemia can be treated with oxygen. So far, the only successful treatment approach which has been tested in larger patient groups, is liver transplantation. Given this background, the aim of this review is to critically discuss current concepts of this serious complication of liver diseases.
Resumo:
Low-intensity concentric (CET) and eccentric (EET) endurance-type training induce specific structural adaptations in skeletal muscle. We evaluated to which extent steady-state adaptations in transcript levels are involved in the compensatory alterations of muscle mitochondria and myofibrils with CET versus EET at a matched metabolic exercise intensity of medicated, stable coronary patients (CAD). Biopsies were obtained from vastus lateralis muscle before and after 8 weeks of CET (n=6) or EET (n=6). Transcript levels for factors involved in mitochondrial biogenesis (PGC-1alpha, Tfam), mitochondrial function (COX-1, COX-4), control of contractile phenotype (MyHC I, IIa, IIx) as well as mechanical stress marker (IGF-I) were quantified using an reverse-transcriptase polymerase chain reaction approach. After 8 weeks of EET, a reduction of the COX-4 mRNA level by 41% and a tendency for a drop in Tfam transcript concentration (-33%, P=0.06) was noted. This down-regulation corresponded to a drop in total mitochondrial volume density. MyHC-IIa transcript levels were specifically decreased after EET, and MyHC-I mRNA showed a trend towards a reduction (P=0.08). Total fiber cross-sectional area was not altered. After CET and EET, the IGF-I mRNA level was significantly increased. The PGC-1alpha significantly correlated with Tfam, and both PGC-1alpha and Tfam significantly correlated with COX-1 and COX-4 mRNAs. Post-hoc analysis identified significant interactions between the concurrent medication and muscular transcript levels as well as fiber size. Our findings support the concept that specific transcriptional adaptations mediate the divergent mitochondrial response of muscle cells to endurance training under different load condition and indicate a mismatch of processes related to muscle hypertrophy in medicated CAD patients.
Resumo:
In evaluating the accuracy of diagnosis tests, it is common to apply two imperfect tests jointly or sequentially to a study population. In a recent meta-analysis of the accuracy of microsatellite instability testing (MSI) and traditional mutation analysis (MUT) in predicting germline mutations of the mismatch repair (MMR) genes, a Bayesian approach (Chen, Watson, and Parmigiani 2005) was proposed to handle missing data resulting from partial testing and the lack of a gold standard. In this paper, we demonstrate an improved estimation of the sensitivities and specificities of MSI and MUT by using a nonlinear mixed model and a Bayesian hierarchical model, both of which account for the heterogeneity across studies through study-specific random effects. The methods can be used to estimate the accuracy of two imperfect diagnostic tests in other meta-analyses when the prevalence of disease, the sensitivities and/or the specificities of diagnostic tests are heterogeneous among studies. Furthermore, simulation studies have demonstrated the importance of carefully selecting appropriate random effects on the estimation of diagnostic accuracy measurements in this scenario.
Resumo:
Retinae of aged humans show signs of vascular regression. Vascular regression involves a mismatch between Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF) expression. We used heterozygous Ang-2 deficient (Ang2LacZ) mice to evaluate murine retinal vascular changes and gene expression of growth factors. Vascular changes were assessed by quantitative retinal morphometry and gene expression levels of growth factors were measured by quantitative PCR. The numbers of endothelial cells and pericytes did not change in the Ang2LacZ retinae with age, whereas they decreased throughout the age spectrum studied in the wild type retinae. Moreover, vascular regression significantly decelerated in the heterozygous Ang2LacZ retinae (200% to 1 month), while the formation of acellular capillaries was significantly increased at 13 months in the wild type retinae (340% to 1 month). Gene expression analysis revealed that VEGF, Ang-1, PDGF-B and Ang2 mRNA levels were decreased in the wild type retinae at 9 month of age. However, the decrease of Ang-2 was smaller compared with other genes. While VEGF levels dropped in wild type mice up to 60% compared to 1 month, VEGF increased in heterozygous Ang-2 deficient retinae at an age of 9 months (141% to 1 month). Similarly, Ang-1 levels decreased in wild type mice (45% to 1 month), but remained stable in Ang2LacZ mice. These data suggest that Ang-2 gene dose reduction decelerates vasoregression in the retina with age. This effect links to higher levels of survival factors such as VEGF and Ang-1, suggesting that the ratio of these factors is critical for capillary cell survival.
Resumo:
Endothelin regulates cytokine expression in vitro and in vivo. This study investigated the effects of chronic allograft rejection on hepatic endothelin-converting enzyme-1 (ECE-1) gene expression and endothelin-1 (ET-1) plasma clearance. Using the Lewis-F344 minor histocompatibility mismatch model of heterotopic cardiac transplantation, hepatic ECE-1 gene expression was measured by real-time polymerase chain reaction and host plasma clearance of ET-1 was measured 8 weeks after transplantation in the absence of immunosuppression. In animals undergoing allograft rejection, hepatic ECE-1 gene expression increased 2-fold (P < 0.05), whereas no effect of rejection on ET-1 clearance from plasma was observed. In summary, upregulation of ECE-1 gene expression occurs in the liver of the host during chronic allograft rejection. Because the liver represents both a key organ for cytokine production and for endothelin metabolism, increased hepatic ECE-1-mediated ET-1 synthesis may contribute to host responses and cytokine production during allograft rejection.
Resumo:
OBJECTIVE: Flow mismatch between the supplying artery and the myocardial perfusion region has been observed in patients with internal thoracic artery grafts. Thus coronary flow changes of arterial (internal thoracic artery grafts) and saphenous (saphenous vein grafts) bypass grafts were studied early and late after coronary artery bypass grafting. METHODS: Thirty patients undergoing elective bypass surgery (internal thoracic artery and saphenous vein grafts) were studied intraoperatively and (17 patients) 3 to 10 months postoperatively. Coronary flow was measured intraoperatively with the transit-time Doppler scanning technique. Postoperatively, flow velocity and coronary flow reserve were determined with the Doppler flow wire technique. Quantitative angiographic analysis was used to determine vessel size for calculation of absolute flow. RESULTS: Intraoperatively, internal thoracic artery graft flow was significantly lower than saphenous vein graft flow (31 +/- 8 vs 58 +/- 29 mL/min, P < .01). Postoperatively, internal thoracic artery graft flow increased significantly to 42 +/- 24 mL/min at 3 months and to 56 +/- 30 mL/min (P < .02 vs intraoperative value) at 10 months, respectively. However, saphenous vein graft flow remained unchanged over time (58 +/- 29 to 50 +/- 27 mL/min at 3 months and 46 +/- 27 mL/min at 10 months). Coronary flow reserve was abnormally low intraoperatively in the internal thoracic artery (1.3 +/- 0.3) and saphenous vein (1.6 +/- 0.5) grafts but increased significantly to normal values in both types of graft at follow-up. CONCLUSIONS: Bypass flow of the internal thoracic artery graft is significantly reduced intraoperatively when compared with that of the saphenous vein graft. However, 3 and 10 months after the operation, flow of the internal thoracic artery graft increases significantly and is similar to saphenous vein graft flow. This finding can be explained by an early flow mismatch of the native internal thoracic artery in the presence of a large perfusion territory. During follow-up, there is vascular remodeling of the internal thoracic artery, probably because of endothelium-mediated mechanisms.
Resumo:
Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.
Resumo:
In this prospective, non-randomized 6-month observational study we evaluated the efficacy of intravenous immunoglobulin (IVIg) dose increase in patients with multifocal motor neuropathy (MMN). Diagnosis according to AAEM criteria, repetitive IVIg treatment for at least one year, persistent paresis and conduction block, stable symptoms and findings for at least six months were inclusion criteria. Nine patients (7 men) were identified and approved to standardized increase of IVIg dose. Patients were monitored using clinical scores and electrophysiological studies. Dose was increased from a baseline of 0.5 g/kg per month [mean, range: 0.1-1.1], given at variable intervals [4-12 weeks] to 1.2 g/kg per month given over 3 consecutive days planned for 6 cycles. If the patients' motor function did not improve after two cycles they entered step two: Dose was increased to 2 g/kg per month given over 5 consecutive days. The increased dose was maintained for 6 months. Assessments were performed by the same investigator, not involved in the patient's management, at baseline, after 2 and after 6 months. Following dose increase, motor function significantly improved in 6 patients (p = 0.014), 2 patients entered step two, 1 patient withdrew due to absent efficacy. Higher doses of IVIg caused more side effects, however, transient and rarely severe (p = 0.014). IVIg dose increase may improve motor functions in patients with stable MMN on long-term IVIg therapy independent of baseline dose. Improvement of motor function was associated with shorter disease duration (p = 0.008), but not with degree of muscle atrophy (p = 0.483). The treatment strategy to try to find the lowest effective dose and the longest tolerated interval might lead to underdosing in the long-term in many patients.
Resumo:
Disturbances in power systems may lead to electromagnetic transient oscillations due to mismatch of mechanical input power and electrical output power. Out-of-step conditions in power system are common after the disturbances where the continuous oscillations do not damp out and the system becomes unstable. Existing out-of-step detection methods are system specific as extensive off-line studies are required for setting of relays. Most of the existing algorithms also require network reduction techniques to apply in multi-machine power systems. To overcome these issues, this research applies Phasor Measurement Unit (PMU) data and Zubov’s approximation stability boundary method, which is a modification of Lyapunov’s direct method, to develop a novel out-of-step detection algorithm. The proposed out-of-step detection algorithm is tested in a Single Machine Infinite Bus system, IEEE 3-machine 9-bus, and IEEE 10-machine 39-bus systems. Simulation results show that the proposed algorithm is capable of detecting out-of-step conditions in multi-machine power systems without using network reduction techniques and a comparative study with an existing blinder method demonstrate that the decision times are faster. The simulation case studies also demonstrate that the proposed algorithm does not depend on power system parameters, hence it avoids the need of extensive off-line system studies as needed in other algorithms.
Resumo:
The authors describe the design, fabrication, and testing of a passive wireless sensor platform utilizing low-cost commercial surface acoustic wave filters and sensors. Polyimide and polyethylene terephthalate sheets are used as substrates to create a flexible sensor tag that can be applied to curved surfaces. A microfabricated antenna is integrated on the substrate in order to create a compact form factor. The sensor tags are fabricated using 315 MHz surface acoustic wave filters and photodiodes and tested with the aid of a fiber-coupled tungsten lamp. Microwave energy transmitted from a network analyzer is used to interrogate the sensor tag. Due to an electrical impedance mismatch at the SAW filter and sensor, energy is reflected at the sensor load and reradiated from the integrated antenna. By selecting sensors that change electrical impedance based on environmental conditions, the sensor state can be inferred through measurement of the reflected energy profile. Testing has shown that a calibrated system utilizing this type of sensor tag can detect distinct light levels wireless and passively. The authors also demonstrate simultaneous operation of two tags with different center passbands that detects light. Ranging tests show that the sensor tags can operate at a distance of at least 3.6 m.
Resumo:
A 57-year-old man, operated eight years before for a left frontal falx meningioma, presented with short lasting, stereotyped episodes of paresthesias ascending from the right foot to the hand. A diagnosis of somatosensory seizures with jacksonian march was made. The patient was given antiepilectics but 5 days later, a few hours after another paresthesic episodes, he developed right hemiplegia, hemianesthesia and dysartria due to an infarct of left capsular posterior limb. We deem that in this patient the paresthesic episodes were more likely an expression of a capsular warning syndrome than of parietal epilepsy because of the frontal localization of the surgical lesion, the absence of motor components in all episodes, the negativity of repeated EEG, and the lack of recurrences after stroke. In capsular warning syndrome sensory symptoms mimicking a jacksonian march can be due to ischemic depolarization progressively recruiting the somatotopically arranged sensory fibers in the posterior capsular limb.
Resumo:
OBJECTIVE: Multiple organ failure is a common complication of acute circulatory and respiratory failure. We hypothesized that therapeutic interventions used routinely in intensive care can interfere with the perfusion of the gut and the liver, and thereby increase the risk of mismatch between oxygen supply and demand. DESIGN: Prospective, observational study. SETTING: Interdisciplinary intensive care unit (ICU) of a university hospital. PATIENTS: Thirty-six patients on mechanical ventilation with acute respiratory or circulatory failure or severe infection were included. INTERVENTIONS: Insertion of a hepatic venous catheter. MEASUREMENTS AND MAIN RESULTS: Daily nursing procedures were recorded. A decrease of >or=5% in hepatic venous oxygen saturation (Sho2) was considered relevant. Observation time was 64 (29-104) hours (median [interquartile range]). The ICU stay was 11 (8-15) days, and hospital mortality was 35%. The number of periods with procedures/patient was 170 (98-268), the number of procedure-related decreases in Sho2 was 29 (13-41), and the number of decreases in Sho2 unrelated to procedures was 9 (4-19). Accordingly, procedure-related Sho2 decreases occurred 11 (7-17) times per day. Median Sho2 decrease during the procedures was 7 (5-10)%, and median increase in the gradient between mixed and hepatic venous oxygen saturation was 6 (4-9)%. Procedures that caused most Sho2 decreases were airway suctioning, assessment of level of sedation, and changing patients' position. Sho2 decreases were associated with small but significant increases in heart rate and intravascular pressures. Maximal Sequential Organ Failure Assessment scores in the ICU correlated with the number of Sho2 decreases (r: .56; p < 0.001) and with the number of procedure-related Sho2 decreases (r: .60; p < 0.001). CONCLUSIONS: Patients are exposed to repeated episodes of impaired splanchnic perfusion during routine nursing procedures. More research is needed to examine the correlation, if any, between nursing procedures and hepatic venous desaturation.
Resumo:
OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Resumo:
Support for the theory of ecological speciation requires evidence for ecological divergence between species which directly or indirectly causes reproductive isolation. This study investigates effects of ecological vs. genetic disparity of parental species on the presence of endogenous selection (deformation and mortality rates) and potential sources of exogenous selection (growth rates and hatch timing) on hybrids. Hybrid embryonic development is analysed in a common-garden full-sib cross of three species belonging to two different ecotypes within the Coregonus lavaretus species flock in the central Alpine region of Europe. Although hatch timing was similar across the three species, embryonic growth rates and egg sizes differed between ecotypes. This led to a mismatch between embryonic growth rate and egg size in hybrid crosses that reveals epistasis between the maternal and embryonic genomes and transgressive hatch times that were asynchronous with control crosses. A strong constraint of egg size to embryo size at late development was also evident. We argue that this demonstrates potential for coadaptation of a maternal trait (egg size) with offspring growth rate to be an important source of selection against hybridization between ecotypes with different egg sizes. Implications for the measurement and quantification of early life-history traits affected by this additive relationship, such as hatch day and larval size, are also discussed.