958 resultados para Miocene bacteria and mesofauna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flavobacterium columnare é o agente etiológico da columnariose em peixes de água doce, ocasionando enfermidade na pele e nas brânquias, provocando freqüentemente um grande número de mortalidade. O objetivo deste estudo foi o isolamento e a caracterização de Flavobacterium columnare em peixes tropicais no Brasil. Piracanjuba (Brycon orbignyanus), pacu (Piaractus mesopotamicus), tambaqui (Colossoma macropomum) e cascudo (Hypostomus plecostomus) foram examinados externamente com relação a sinais característicos de columnariose, como manchas acinzentadas na cabeça, região dorsal e pedúnculo caudal dos peixes. A amostragem compreendeu a coleta de 50 exemplares de peixes, representando as quatro diferentes espécies escolhidas para este estudo. Amostras para o isolamento foram obtidas através de raspado com swab estéril das lesões e do rim dos peixes clinicamente diagnosticados como acometidos por columnarios e imediatamente semeados em meios de culturas artificiais (líquido e sólido) próprios para o estudo de Flavobacterium segundo Carlson e Pacha (1968). No meio líquido, houve o desenvolvimento de microrganismos que observados em gota pendente apresentaram a forma de bacilos finos, longos, móveis por deslizamento. Através da coloração de Gram, apresentaram morfologia de bacilos finos, Gram negativos, agrupados em colunas. em meio sólido, as colônias eram pequenas, cinza-amareladas, com borda em forma de raiz. No total, foram obtidos quatro isolamentos: 01 cepa de Brycon orbignyanus; 01 cepa de Piaractus mesopotamicus; 01 cepa de Colossoma macropomum; e 01 cepa de Hypostomus plecostomus. A caracterização bioquímica das amostras, como absorção do vermelho Congo, produção de flexirrubina, produção de H2S e redução do nitrato, sugere que os isolamentos poderiam ser classificados como Flavobacterium columnare.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antimicrobial resistance is a major health problem. After decades of research, numerous difficulties in tackling resistance have emerged, from the paucity of new antimicrobials to the inefficient contingency plans to reduce the use of antimicrobials; consequently, resistance to these drugs is out of control. Today we know that bacteria from the environment are often at the very origin of the acquired resistance determinants found in hospitals worldwide. Here we define the genetic components that flow from the environment to pathogenic bacteria and thereby confer a quantum increase in resistance levels, as resistance units (RU). Environmental bacteria as well as microbiomes from humans, animals, and food represent an infinite reservoir of RU, which are based on genes that have had, or not, a resistance function in their original bacterial hosts. This brief review presents our current knowledge of antimicrobial resistance and its consequences, with special focus on the importance of an ecologic perspective of antimicrobial resistance. This discipline encompasses the study of the relationships of entities and events in the framework of curing and preventing disease, a definition that takes into account both microbial ecology and antimicrobial resistance. Understanding the flux of RU throughout the diverse ecosystems is crucial to assess, prevent and eventually predict emerging scaffolds before they colonize health institutions. Collaborative horizontal research scenarios should be envisaged and involve all actors working with humans, animals, food and the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Probiotics are living microorganisms which, when ingested in certain amounts, have a positive impact on human health, mainly due to their roles in improving the balance of the intestinal microflora. On the other hand, the prebiotic are food ingredients that may also have a positive impact in the improvement of the intestinal flora. These components, which fall into the category of fibers, are not digested in the upper gastrointestinal tract, and therefore reach the colon where they stimulate the growth and/or the activity of some types of bacteria. The term synbiotic is used for products that contain both probiotics and prebiotics, thus taking advantage of both the addition of beneficial bacteria and the encouragement of the growth of resident beneficial bacteria. The present chapter aims to review the scientific literature related to prebiotics, probiotics and synbiotics, including their identification, properties and health benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adult intestinal microbiota comprises a microbial ecosystem of approximately 100 trillion microorganisms, with specific bacterial communities holding distinct metabolic capabilities. Bacteria produce a range of bioactive compounds to survive unfavourable stimuli and to interact with other organisms, and generate several bioactive products during degradation of dietary constituents the host is not capable of digesting. This thesis addressed the impact of feeding potential probiotic bacteria and other dietary strategies such as pure fatty acids and prebiotics, on gut microbiota composition, short chain fatty acid (SCFA) production and modulation of metabolism in animal models. In the first experimental chapter (Chapter 2) a gas chromatography method for the quantification of SCFA was optimized and applied in the analysis of caecal samples obtained in animal studies described in other chapters of this thesis. In Chapter 3, t10, c12 CLA supplementation was shown to significantly alter murine gut microbiota composition and SCFA production rather than no supplementation. These changes were suggested to be extra factors affecting host lipid metabolism. Chapter 4 described the contrasting effects of CLA-producing strains, Bifidobacterium breve DPC 6330 and B. breve NCIMB 702258, on murine fat distribution/composition and gut microbiota composition, suggesting that these changes were most likely strain-dependent. In Chapter 5, dietary GABA-producing strain Lactobacillus brevis DPC 6108 was shown to significantly increase (p<0.05) serum insulin in healthy rats, leading to a second experiment using a type 1 diabetes rat model. Lb. brevis DPC 6108 administration did not change insulin levels in diabetic rats, but attenuated high levels of glucose when compared to diabetic control. However, an auto-immune-induced diabetes model was suggested as a better model to study GABA-related effects on diabetes. In Chapter 6 bovine milk oligosaccharides, 6’sialyllactose and Beneo Orafti P95 oligofructose supplementations were associated with depletion or reduction of less favourable bacteria, demonstrating that ingestion of these oligosaccharides might be a safe and effective approach to modulate populations of the intestinal microbiota. In Chapter 7 (General discussion) the major findings of all studies were reviewed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies in Iowa have long documented the vulnerability of wells with less than 50 feet (15 meters) of confining materials above the source aquifer to contamination from nitrate and various pesticides. Recent studies in Wisconsin have documented the occurrence of viruses in untreated groundwater, even in wells considered to have little vulnerability to contamination from near-surface activities. In addition, sensitive methods have become available for analyses of pharmaceuticals and pesticides. This study represents the first comprehensive examination of contaminants of emerging concern in Iowa’s groundwater conducted to date, and one of the first conducted in the United States. Raw groundwater samples were collected from 66 public supply wells during the spring of 2013, when the state was recovering from drought conditions. Samples were analyzed for 206 chemical and biological parameters; including 20 general water-quality parameters and major ions, 19 metals, 5 nutrients, 10 virus groups, 3 species of pathogenic bacteria, 5 microbial indicators, 108 pharmaceuticals, 35 pesticides and pesticide degradates, and tritium. The wells chosen for this study represent a diverse range of ages, depths, confining material thicknesses, pumping rates, and land use settings. The most commonly detected contaminant group was pesticide compounds, which were present in 41% of the samples. As many as 6 pesticide compounds were found together in a sample, most of which were chloroacetanilide degradates. While none of the measured concentrations of pesticide compounds exceeded current benchmark levels, several of these compounds are listed on the U.S. Environmental Protection Agency’s Contaminant Candidate List and could be subject to drinking water standards in the future. Despite heavy use in the past decade, glyphosate was not detected, and its metabolite, aminomethylphosphonic acid, was only detected in two of 60 wells tested (3%) at the detection limit of 0.02 μg/L. Pharmaceutical compounds were detected in 35% of 63 samples. Of the 14 pharmaceuticals detected, six had reported concentrations above the method reporting limit, with the maximum reported concentration of 826 ng/L for acetaminophen. Diphenhydramine was the only pharmaceutical to have two detections above the reporting limit, at 24.5 and 145 ng/L. Eight pharmaceuticals had confirmed detections at concentrations below the method reporting limit. Caffeine was the most frequently detected pharmaceutical compound (25%), followed by the caffeine metabolite, 1,7-dimethylxanthine (16%). Microorganisms were detected in 21% of the wells using quantitative polymerase chain reaction methodologies. The most frequently detected microorganism was the pepper mild mottle virus (PMMV), a plant pathogen found in human waste. PMMV was detected in 17% of samples at concentrations ranging from 0.4 to 6.38 gene copies per liter. GII norovirus, human polyomavirus, bovine polyomavirus, and Campylobacter were also detected, while adenovirus, enterovirus, GI norovirus, swine hepatitis E, Salmonella, and enterohemmorhagic E. coli were not detected. No correlations were found between viruses or pathogenic bacteria and microbial indicators. Wells with less than 50 feet (15 meters) of confining material were shown to have greater incidence of surface-related contaminants; however, significant relationships (p<0.05) between confining layer thickness and contaminants were only found for nitrate and herbicides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was carried out to evaluate the chemical and pharmacological properties of essential oil (EO) of Lavandula stoechas L. subsp. luisieri that is a spontaneous shrub widespread in Alentejo (Portugal). Oxygenated monoterpenes, as 1,8-cineole, lavandulol and necrodane derivatives are the main components of essential oil. It revealed important antioxidant activity with high ability to inhibit the lipid peroxidation and showed an outstanding effect against a wide spectrum of microorganisms, such as Gram-positive and Gram-negative bacteria and pathogenic yeasts. The analgesic effect studied in rats was dose dependent, reaching a maximum of 67 % at 60 min. with the dose of 200 mg/kg and the anti-inflammatory activity with this dose caused an inhibition in carrageenan-induced rat paw oedema (83 %) that is higher than dexamethasone 1 mg/Kg (69 %). Besides, animals exhibited a normal behaviour after EO administration revealing low toxicity. Essential oil of L. luisieri from Alentejo that presents important pharmacological properties and low toxicity is a promised candidate to be used as food supplement or in pharmaceutical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background:In vitrocell suspension cultivation systems have been largely reported assafe and standardized methods for production of secondary metabolites with medicinaland agricultural interest.Capsicum annuumis one of the most widely grown vegetablein the world and its biological activities have been demonstrated against insects, fungi,bacteria and other groups of organisms. The determination of procedures for thededifferentiation of cells into callus cells and the subsequent study of the callus growthpattern are necessary for the establishment of cellsuspensions and also to subsidizestudies regarding the bioactivity of its secondarymetabolites. To date, no study hasdescribed the development of protocols for callus induction inC. annuumL. cv. Etna. Objective:The objective of this study was to establish a protocol for dedifferentiationof leaf cells of the cultivarC. annuumcv. Etna and to determine the growth pattern ofthe calluses with a focus on the deceleration phase, when the callus cells must besubcultured into a liquid medium in order to establish cell suspension cultivationsaiming at the production of secondary metabolites.Results:The treatment that resultedin the highest %CI, ACCC and callus weight was thecombination of 4.52 μ M 2,4-D +0.44 μ M BA. The calluses produced were friable andwhitish and their growth patternfollowed a sigmoid shape. The deceleration phase started on the 23rdday of cultivation.Conclusion:Callus induction in leaf explants ofC. annuumcv. Etnacan be achieved inMS medium supplemented with 4.52 μ M 2,4-D + 0.44 μ MBA, which results in highcellular proliferation; in order to start a cell suspension culture, callus cells on the 23rdday of culture should be used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest in human intestinal microbiota has increased in the last 20 years and significant advances have been achieved with regard to its composition and functions. The gut microbiota contributes to the maintenance of the host health status and, since alterations in the gut microbiota have been involved in the pathogenesis/progression of some diseases, several studies have focused on the manipulation of its composition. Probiotics are a strategy to maintain/restore the correct balance of gut microbial population and to prevent/treat diseases. The aim of this thesis was to explore the possibility of probiotic supplementation for the prevention/treatment of human diseases and the related study of the intestinal microbial environment. After reviewing studies concerning the use of Bifidobacterium breve as probiotic in paediatric diseases, the effectiveness of a probiotic formulation consisting of two strains of B. breve was assessed in paediatric subjects for the prevention or alleviation of gastrointestinal disorders, including coeliac disease and paediatric obesity. As the emerging role of gut microbiota in neurological diseases, the intestinal microbial environment in amyotrophic lateral sclerosis patients compared to healthy controls and the effects of a probiotic administration were examined. Considering the role of viruses in shaping gut microbiota, gut bacteriophages and bacterial community of preterm infants were investigated. The results evidenced differences in gut microbial composition of healthy controls and diseased subjects in coeliac and amyotrophic lateral sclerosis patients. The probiotic approach was effective in restoring the microbial composition in the former, whereas, in the latter, the influence was focused only on some microbial groups. The probiotic intervention was effective in improving the glyco-insulinemic profile in obese children and in preventing gastrointestinal disorders in healthy newborns. The study of the bacterial and phage composition in preterm infants suggested a transkingdom interplay between bacteria and viruses with a reciprocal influence on their composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis aims to evaluate a method to assess the viability; estimate the bacterial and viral (Hepatitis A and Norovirus) contamination; describe how some parameters change during a week in refrigerated condition and after 24 hours of immersion; estimate indole-producing bacteria and biogenic amines; evaluate the presence of saxitoxin and tetrodotoxin. The method to assess the viability using sea salt is easy to apply. Marine gastropods did not accumulate fecal contaminants, but vibrios due to their feeding. The Vibrio spp. load was even higher than the one registered on Ruditapes philippinarum belonging to the same area For what to concern the evaluation during a week in refrigerated condition and after 24 hours of immersion, non-re-immersed gastropods exceeded the acceptable mortality (10%) after three days in refrigerated conditions, but the Vibrio spp. load did not show a significant increase within three days. The TVC was already high from the beginning and its major part consisted of SSOs, which could be explained by gastropods’ feed, such as the Pseudomonas spp. load and the abundance of IPB. The BAs amount was also correlated with viability and had a statistically significant difference within a week on refrigerated conditions, principally because putrescine, tyramine, spermidine, and cadaverine rise in non-re-immersed samples. It also should be noted that the BAs amount was higher on average than the recommendation of literature. Moreover, re-immersed batches showed acceptable viability even after 3 days, and the Vibrio spp. load, TVC, SSOs, and biogenic amines remained almost constant within a week contrary to non-re-immersed samples. Finally, T. mutabilis and B. brandaris did not accumulate NoVs and TTX. We obtained only one positivity of the HAV sample and traces of STX (not at levels toxic to humans). Our results contribute to identifying food-borne hazards for T. mutabilis and B. brandaris.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polychlorinated biphenyls (PCBs) are chemicals largely employed in the industry, banned at the end of the last century yet still persistent in the environment. Bioremediation, namely exploiting bacteria to reduce PCBs’ toxicity, is receiving attention as a promising approach to remediate polluted site in situ. Natural bioremediation is constrained by several factors as the low amount of the required growth substrates (e.g. electron donors, oxygen) and the scarcity of bacteria able to metabolize PCBs. In this regard, use of biodegradable polymers or applied potentials have been demonstrated effective in priming bioremediation of freshwater environments (e.g. river sediments) polluted by chlorinated solvents or PCBs. Yet, little is known regarding the application in marine sediments, where the abundance of anaerobic competitors (i.e. sulfate reducing bacteria) and the different sediment’s features might affect the bioremediation. In this study, polyhydroxyalkanoates (PHAs) and Microbial Electrochemical Technologies (METs) were applied for the first time to prime bioremediation of PCBs polluted marine sediments. The influence of PHAs was studied on the main anaerobic metabolisms and on the microbial community of the heavily polluted sediments coming from the Pialassa della Baiona, a micro-tidal coastal lagoon in Ravenna, and from Mar Piccolo, the marine basin aside Taranto. The impact of METs was deepened by monitoring the physical-chemical parameters and the main anaerobic metabolisms of the sediments coming from Ravenna. The effectiveness of biostimulating with PHAs depended on the features of the treated site, possibly due to the availability of the amendments and to the competition of the indigenous microbial communities. The bioelectrochemical stimulation inhibited the bioremediation process. In both cases, the presence of an inoculated bacterial community was required to perform bioremediation. The collected results led to a comprehensive analysis of the available literature, questioning what could be the further approaches for an effective in situ bioremediation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug-resistant microbial infections represent an exponentially growing problem affecting communities worldwide. Photodynamic therapy is a promising treatment based on the combination of light, oxygen, and a photosensitizer that leads to reactive oxygen species production, such as superoxide (type I mechanism) and singlet oxygen (type II mechanism) that cause massive oxidative damage and consequently the host cell death. Indigofera genus has gained considerable interest due its mutagenic, cytotoxic, and genotoxic activity. Therefore, this study was undertaken to investigate the effect of crude extracts, alkaloidal fraction, and isolated substance derived from Indigofera truxillensis in photodynamic antimicrobial chemotherapy on the viability of bacteria and yeast and evaluation of mechanisms involved. Our results showed that all samples resulted in microbial photoactivation in subinhibitory concentration, with indigo alkaloid presenting a predominant photodynamic action through type I mechanism. The use of CaCl2 and MgCl2 as cell permeabilizing additives also increased gram-negative bacteria susceptibility to indigo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pectic substances are structural heteropolysaccharides that occur in the middle lamellae and primary cell walls of higher plants. They are composed of partially methyl-esterified galacturonic acid residues linked by alpha-1, 4-glycosidic bonds. Pectinolytic enzymes are complex enzymes that degrade pectic polymers and there are several classes of enzymes, which include pectin esterases, pectin and pectate lyases and polygalacturonases. Plants, filamentous fungi, bacteria and yeasts are able to produce pectinases. In the industrial world, pectinases are used in fruit juice clarification, in the production of wine, in the extraction of olive oil, fiber degumming and fermentation of tea, coffee and cocoa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering that oral preparations made with peel green bananas (e.g. flour and extracts) demonstrated healing effects on mucous membranes and skin, this study evaluated the healing and the antimicrobial property of a topical preparation based on extract of Musa sapientum L., Musaceae, (apple banana) in surgically induced wounds in the skin of male Wistar rats, 100 g. The extract was obtained by decoction, the presence of tannins was detected by phytochemical screening and 10% of the extract was incorporated into the carbopol gel (CMS gel). The processes of healing and bacterial isolation were evaluated in the following experimental groups: control (no treatment), treatment with placebo or with the CMS gel. The healing of surgical wounds treated with the CMS gel was faster when compared with the control and placebo groups and the treatment with CMS gel also inhibited the growth of pyogenic bacteria and enterobacteria in the wounds. The results indicate that the extract of Musa sapientum epicarp has healing and antimicrobial properties (in vivo), probably, due to tannins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filleting yield of Nile tilapia Oreochromis niloticus (L.) is low (30%) and generates large amount of wastes that may turn into environmental and economic problem. However, these wastes can be used for the extraction of minced fish (MF) which can be used in the preparation of sausages. The objective of this study was to assess the quality of sausages prepared with 0, 20, 40, 60, 80 and 100% of MF from Nile tilapia filleting waste during storage at 0±0.3ºC. Alterations in the instrumental color (L*, a* and b*), lipid oxidation (TBARS), total volatile nitrogenous bases (TVB-N), pH, microbiological condition (pathogenic bacteria and aerobic psychrotrophic bacteria), and sensory attributes (color, odor, flavor, texture and overall acceptability) were evaluated for up to 40 days. The addition of MF to sausages increased TBARS values and decreases TVB-N, L*, a* and b* values. Acceptability of color attribute decreased with increasing MF; best flavor, texture and overall acceptability scores were registered for sausages containing 40 and 60% MF; best odor was registered for 100% MF. Pathogenic microorganisms were not detected, but decrease in pH and proliferation of aerobic psychrotrophic bacteria which, however, did not compromise sensory evaluation of sausages were registered throughout storage. Sausages prepared with MF from tilapia filleting waste have a shelf-life of 40 days when stored at 0±0.3ºC, and the maximum recommended MF inclusion to maintain good sensory quality is 60%.