889 resultados para Mice Bioassay
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The neuromuscular junction of the extensor digitorum longus muscle of fingers was analyzed in 21 young (three months) and old (from six to 25 months) mice, from both genders. Morphologic changes were found throughout the mouse life, being more frequent and visible with aging. According with the data described in the literature consulted and the observations taken in this research, it becomes clear that a continuous process of morphological remodeling occurs in all neuromuscular ultrastructural junctions of the extensor digitorum longus muscle of fingers, during the life of the animal. Theses changes are characterized by figures of myelin in the cytoplasm of Schwann cells, pleomorphic and multivesiclar bodies, mitochondrias with morphologically altered crests in the axon terminal and degenerated junction folders. Coated vesicles are common in older animals and rare in young animals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rationale: Mice exhibit antinociception after a single experience in the elevated plus maze (EPM), an animal model of anxiety. Objective: This study investigated the mechanisms involved in this form of anxiety-induced antinociception. Methods: Nociception was evaluated by means of the writhing test in mice confined either to the open or enclosed arms of the EPM. The effects of systemic (naloxone, midazolam and 8-OH-DPAT) or intra-amygdala (8-OH-DPAT. NAN-190 and midazolam) drug infusions were investigated in mice previously treated i.p. with 0.6% acetic acid, an algic stimulus that induces abdominal contortions. The effects of these drugs on conventional measures of anxiety (% entries and % time in open arms) in a standard EPM test were also independently investigated. Results: Open-arm confinement resulted in a high-magnitude antinociception (minimum 85%, maximum 450%) compared with enclosed arm confinement. The opiate antagonist naloxone (1 mg/kg and 10 mg/kg) neither blocked this open arm-induced antinociception (OAIA) nor modified indices of anxiety in EPM. Administration of midazolam (0.5-2 mg/kg, s.c.) increased OAIA and produced antinociception in enclosed confined animals, as well as attenuating anxiety in the EPM. The 5-HT(1A) receptor agonist 8-OH-DPAT (0.05-1 mg/kg, s.c.) had biphasic effects on OAIA, antagonising the response at the lowest dose and intensifying it at the highest dose. In addition, low doses of this agent reduced anxiety in the EPM. Although bilateral injections of 8-OH-DPAT (5.6 nmol/0.4 mu l) or NAN-190 (5.6 nmol and 10 nmol/0.4 mu l) into the amygdala did not alter OAIA, increased anxiety was observed in the EPM. In contrast, intra-amygdala administration of midazolam (10 nmol and 30 nmol/0.4 mu l) blocked both OAIA and anxiety. Conclusions: These results with systemic and intracerebral drug infusion suggest that 5-HT(1A) receptors localised in the amygdala are not involved in the pain inhibitory processes that are recruited during aversive situations. However, activation of these receptors does phasically increase anxiety. Although the intrinsic antinociceptive properties of systemically administered midazolam confounded interpretation of its effects on OAIA, intra-amygdala injections of this compound suggest that benzodiazepine receptors in this brain region modulate both the antinociceptive and behavioural (anxiety) responses to the EPM.
Resumo:
Glutamate NMDA receptor activation within the periaqueductal gray (PAG) leads to antinociceptive, autonomic and behavioral responses characterized as the fear reaction. Considering that NMDA receptor triggers activation of neuronal nitric oxide synthase (nNOS), enzyme that produces nitric oxide (NO), this study investigated the effects of intra-PAG infusions of NPLA (N omega-propyl-L-arginine), an nNOS inhibitor, on behavioral and antinociceptive responses induced by local injection of NMDA receptor agonist in mice. The behaviors measured were frequency of jumping and rearing as well as duration (in seconds) of running and freezing. Nociception was assessed during the second phase of the formalin test (injection of 50 mu l of formalin 2.5% into the dorsal surface of the right hind paw). Five to seven days after stereotaxic surgery for intracerebral cannula implantation, mice were injected with formalin into the paw, and 10 min later, they received intra-dPAG injection of NPLA (0, 0.2, or 0.4 nmol/0.1 mu l). Ten minutes later, they were injected with NMDA (N-methyl-D-aspartate: 0 or 0.04 nmol/0.1 mu l) into the same midbrain site and were immediately placed in glass holding cage for recording the defensive behavior and the time spent on licking the injected paw with formalin during a period of 10 min. Microinjections of NMDA significantly decreased nociception response and produced jumping, running, and freezing reactions. Intra-dPAG injections of NPLA (0.4 nmol) completely blocked the NMDA effects without affecting either behavioral or nociceptive responses in intra-dPAG saline-injected animals, except for the rearing frequency that was increased by the nNOS inhibitor. These results strongly suggest the involvement of NO within the PAG in the antinociceptive and defensive reactions induced by local glutamate NMDA receptor activation in this midbrain structure. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Recent results from our laboratory have shown that 30-bites social conflict in mice produces a high-intensity, short-term analgesia which is attenuated by systemically injected 5-HT1A receptor agonists, such as BAY R 1531 (6-methoxy-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz(c,d)indole hydrochloride) and gepirone. The present study investigated the effects of these drugs, as well as the 5-HT1A receptor antagonist WAY 100135 (N-tert-butyl-3-(4-(2-methoxyphenyl)piperazine-1-yl)-2-phenylpropanamide) injected into the midbrain periaqueductal gray matter of mice on 30-bites analgesia. Four to five days after guide-cannula implantation, each mouse received microinjection of gepirone (30 nmol/0.2 mu l), BAY R 1531 (10 nmol/0.2 mu l), WAY 100135 (10 nmol/0.2 mu l), saline (0.9% NaCl) or vehicle (saline + 4% Tween 80) 5 min before either an aggressive (30 bites) or a non-aggressive interaction. Nociception was assessed by the tail-flick test made before as well as 1, 5, 10 and 20 min after social interaction. The full 5-HT1A receptor agonist BAY R 1531 blocked, whereas, WAY 100135 and gepirone intensified 30-bites analgesia, Neither non-aggressive interaction, per se, nor the three compounds given after this type of social interaction significantly changed nociception. These results indicate that 5-HT1A receptors in the periaqueductal gray inhibit analgesia induced by social conflict in mice. (C) 1998 Elsevier B.V. B.V.
Resumo:
The positive profile of systemically-administered 5-HT(1A) receptor antagonists in several rodent models of anxiolytic activity suggests an important role for postsynaptic 5-HT(1A) receptor mechanisms in anxiety. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 0.1, 1.0 or 3.0 mug in 0.2 mul) into the dorsal (DH) or ventral (VH) hippocampus an behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As prior experience is known to modify pharmacological responses in this test, the effects of intra-hippocampal infusions were examined both in maze-naive and maze-experienced subjects. Test videotapes were scored for conventional indices of anxiety (% open arm entries/time) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-VH (but not intra-M) infusions of WAY-100635 (3.0 mug but not lower doses) increased open arm exploration and reduced risk assessment. These effects were observed in the absence of significant changes in locomotor activity. In contrast, neither intra-VH nor intra-DH infusions of WAY-100635 altered the behaviour of maze-experienced mice. These Findings suggest that postsynaptic 5-HT(1A) receptors in the ventral (but not dorsal) hippocampus play a significant role both in the mediation of plus-maze anxiety in mice and in experientially-induced alterations in responses to this test. (C) 2002 Elsevier B.V. BY All rights reserved.
Resumo:
This study investigated whether the opportunity to avoid or escape the open arms of an elevated plus-maze (EPM) affects the antinociceptive response observed when mice are subjected to open arm confinement. Furthermore, in order to better characterize the relationship between emotion and antinociception in the EPM, we examined the behavioral effects of midazolam injection into the midbrain periaqueductal gray matter (PAG). As our main aim was to evaluate the relevance of different levels of approach-avoid conflict (i.e. The presence of open and closed arms) to maze-induced antinociception, mice were exposed to one of three types of EPM-a standard EPM (sEPM), an open EPM (oEPM: four open arms) or, as a control condition, an enclosed EPM (eEPM: four enclosed arms). Nociception was assessed using the formalin test. Twenty minutes after formalin injection (50 mu l, 2.5% formalin) into the dorsal right hind paw, mice received an intra-PAG injection of saline or midazolam (10-20 nmol). Five minutes later, they were individually exposed to one of the mazes for 10 min (25-35 min after formalin injection). Videotapes of the test sessions were scored for a variety of behavioral measures including time spent licking the formalin-injected paw. To examine whether the effects of midazolam on anxiety-like behavior may have been influenced by concurrent nociceptive stimulation (i.e. formalin pretreatment), naive mice were submitted to a similar procedure to that described above for the sEPM test but without formalin pretreatment. Results showed that mice exposed to the oEPM spent significantly less time licking the injected paw compared to groups exposed to either the sEPM or eEPM. Although exposure to the sEPM induced anxiety-like behaviors (i.e. open arm avoidance), it did not result in antinociception. Intra-PAG infusions of midazolam failed to block oEPM-induced antinociception or to alter sEPM-induced anxiety in mice that had received formalin injection. However, under normal test conditions (i.e. in the absence of formalin-induced nociceptive stimulation), intra-PAG midazolam produced clear anti-anxiety effects in mice exposed to the sEPM. Findings are discussed in terms of different emotional states induced by the oEPM and sEPM and the influence of concurrent nociceptive stimulation on the anti-anxiety effect of intra-PAG midazolam. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In order to investigate the relationship between behaviors elicited by chemical stimulation of the dorsal periaqueductal gray (dorsal PAG) and spontaneous defensive behaviors to a predator, the excitatory amino acid D,L-homocysteic acid (5 nmol in 0.1 mu l), was infused into the dorsal PAG and behavioral responses of mice were evaluated in two different situations, a rectangular novel chamber or the Mouse Defense Test Battery (MDTB) apparatus. During a 1-min period following drug infusion, more jumps were made in the chamber than in the MDTB runway but running time and distance traveled were significantly higher in the runway. Animals were subsequently tested using the standard MDTB procedure (anti-predator avoidance, chase and defensive threat/attack). No drug effects on these measures were significant. In a further test in the MDTB apparatus, the pathway of the mouse during peak locomotion response was blocked 3 times by the predator stimulus (anesthetized rat) to determine if the mouse would avoid contact. Ninety percent of D,L-homocysteic treated animals made direct contact with the stimulus (rat), indicating that D,L-homocysteic-induced running is not guided by relevant (here, threat) stimuli. These results indicate that running as opposed to jumping is the primary response in mice injected with D,L-homocysteic into the dorsal PAG when the environment enables flight. However, the lack of responsivity to the predator during peak locomotion suggests that D,L-homocysteic-stimulation into the dorsal PAG does not induce normal antipredator flight. (c) 2006 Published by Elsevier B.V.
Resumo:
Serotonin (5-HT) can either increase or decrease anxiety-like behaviour in animals, actions that depend upon neuroanatomical site of action and 5-HT receptor subtype. Although systemic studies with 5-HT(2) receptor agonists and antagonists suggest a facilitatory role for this receptor subtype in anxiety, somewhat inconsistent results have been obtained when such compounds have been directly applied to limbic targets such as the hippocampus and amygdala. The present study investigated the effects of the 5-HT(2B/2C) receptor agonist mCPP bilaterally microinjected into the dorsal hippocampus (DH: 0, 0.3 1.0 or 3.0 nmol/0.2 mu l), the ventral hippocampus (VH: 0, 0.3, 1.0 or 3.0 nmol/0.2 mu l) or the amygdaloid complex (0, 0.15, 0.5, 1.0 or 3.0 nmol/0.1 mu l) in mice exposed to the elevated plus-maze (EPM). Test sessions were videotaped and subsequently scored for conventional indices of anxiety (percentage of open arm entries and percentage of open arm time) and locomotor activity (closed arm entries). Results showed that mCPP microinfusions into the DH or VH failed to affect any behavioural measure in the EPM. However, when injected into the amygdaloid complex, the dose of 1.0 nmol of this 5HT(2B/2C) receptor agonist increased behavioural indices of anxiety without significantly altering general activity levels. This anxiogenic-like effect of mCPP was selectively and completely blocked by local injection of a behaviourally-inactive dose of SDZ SER-082 (10 nmol/0.1 mu l), a preferential 5-HT(2C) receptor antagonist. These data suggest that 5HT(2C) receptors located within the amygdaloid complex (but not the dorsal or ventral hippocampus) play a facilitatory role in plus-maze anxiety in mice. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Studies in several laboratories have confirmed the anxiolytic potential of a wide range of 5-HT1A receptor antagonists in rats and mice, with recent evidence pointing to a postsynaptic site of action in the ventral hippocampus. It would, therefore, be predicted that blockade of 5-HT1A somatodendritic autoreceptors in the midbrain raphe nuclei should produce anxiogenic-like effects. To test this hypothesis, we investigated the effects of WAY-100635 microinfusions (0, 1.0 or 3.0 mug in 0.1 mul) into the dorsal (DRN) or median (MRN) raphe nuclei on behaviours displayed by male Swiss-Webster mice in the elevated plus-maze. As this test is sensitive to prior experience. The effects of intra-raphe infusions were examined both in maze-naive and maze-experienced subjects. Sessions, were videotaped and subsequently scored for conventional indices of anxiety (open arm avoidance) and locomotor activity (closed arm entries), as well as a range of ethological measures (e.g. risk assessment). In maze-naive mice, intra-MRN (but not intra-DRN) infusions of WAY-100635 (3.0 mug) increased open arm exploration and reduced risk assessment. Importantly, these effects could not be attributed to a general reduction in locomotor activity. A similar, though somewhat weaker, pattern of behavioural change was observed in maze-experienced animals. This unexpected anxiolytic effect of 5-HT1A autoreceptor blockade in the MRN cannot be accounted fur by a disinhibition of 5-HT release in forebrain targets (e.g. hippocampus and amygdala), where stimulation of postsynaptic 5-HT1A receptors enhances anxiety-like responses. However, as the MRN also projects to the periaqueductal gray matter (PAG), an area known to be sensitive to the anti-aversive effects or 5-HT, it is argued that present results may reflect increased 5-HT release at this crucial midbrain locus within the neural circuitry of defense. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)