845 resultados para Materiais poliméricos
Resumo:
Exemplos da perturbação do meio ambiente pela ação humana são recorrentes. Frente a isto, fica evidente a necessidade de mudança deste quadro, pois áreas com alto valor ecológico são amplamente afetadas, prejudicando as interações entre animais e plantas, nas quais as aves se destacam, sendo elas um grupo com claro papel na dinâmica de ecossistemas e de fácil identificação. Em vários aspectos, o conhecimento científico pode ser visto como um grande aliado para esta mudança. Visando a formação de cidadãos, a Educação Ambiental mostra-se como um importante meio de conscientização. Neste contexto, este trabalho se dispôs a confeccionar um guia didático e um jogo educativo sobre as aves, destinados a alunos do 7º ano do Ensino Fundamental,, visando propiciar aprendizado durante a observação das mesmas. Os materiais foram propostos a partir de uma lista elaborada no presente estudo, que reuniu nove levantamentos realizados na Fazenda Experimental Edgardia, vinculada à Universidade Estadual Paulista - UNESP, Campus de Botucatu, SP, de 1992 a 2010. Uma primeira versão dos materiais foi confeccionada e avaliada por um grupo de alunos, possibilitando a produção de sua versão final
Resumo:
Technology is growing interest in the use of composites, due to the requirement of lighter materials and more resistant, factors essential to meet the project specifications and reduce the operational cost. In the production of high performance structural composites, considering the aerospace criteria, the domestic industry has shown interest in the process of resin transfer molding (RTM) for reproducibility and low cost. This process is suitable for producing components of polymeric composites with relatively simple geometries, consistent thicknesses, high quality finish with no size limitations. The objective of this work was machined carbon steel to make a matched-die tooling for RTM and produce two composite plates of epoxy resin and carbon fiber fabric with and without induced discontinuities, which were compared towards their impregnation with ultrasound, their properties via tensile tests and thermal analysis. In ultrasonic inspection, it was found good impregnation of the preform of both composites. In the thermal analysis it was possible to check the degradation temperature of the composites, the glass transition temperature and it was found that the composites showed no effective cure cycles, but presented good performance in the tensile test when compared with aluminum alloy 7050 T7451 . The results showed that the injection strategy was appropriate since the laminate exhibited a good quality for the proposed application
Resumo:
For the development of this graduate work of fractal fracture behavior, it is necessary to establish references for fractal analysis on fracture surfaces, evaluating, from tests of fracture tenacity on modes I, II and combined I / II, the behavior of fractures in fragile materials, on linear elastic regime. Fractures in the linear elastic regime are described by your fractal behavior by several researchers, especially Mecholsky JJ. The motivation of that present proposal stems from work done by the group and accepted for publication in the journal Materials Science and Engineering A (Horovistiz et al, 2010), where the model of Mecholsky could not be proven for fractures into grooved specimens for tests of diametric compression of titania on mode I. The general objective of this proposal is to quantify the distinguish surface regions formed by different mechanisms of fracture propagation in linear elastic regime in polymeric specimens (phenolic resin), relating tenacity, thickness of the specimens and fractal dimension. The analyzed fractures were obtained from SCB tests in mode I loading, and the acquisition of images taken using an optical reflection microscope and the surface topographies obtained by the extension focus method of reconstruction, calculating the values of fractal dimension with the use of maps of elevations. The fractal dimension was classified as monofractal dimension (Df), when the fracture is described by a single value, or texture size (Dt), which is a macroscopic analysis of the fracture, combined with the structural dimension (Ds), which is a microscopic analysis. The results showed that there is no clear relationship between tenacity, thickness and fractal values for the material investigated. On the other hand it is clear that the fractal values change with the evolution of cracks during the fracture process ... (Complete abstract click electronic access below)
Resumo:
This graduation project aims to study and analyze the reuse of solid waste projects in Civil Construction, checking the different factors such as economic viability, production processes, classification of the main materials, advantages and disadvantages, always seeking to guide themselves according Brazilian legislation establishing criteria for Waste Management of Construction. In addition, points are studied that prevent the expansion of recycling construction waste. It also offers needs improvements to the implementation of recycling to be carried out on a more expressive than current
Resumo:
This work aims to synthesize the manganese and zinc ferrite, by the polymeric precursor method, in order to obtain materials with appropriate characteristics for the application in medical diagnosis techniques. The manganese and zinc ferrite powders with the composition of Mn(1-x)ZnxFe2O4, where x=0,23, were prepared and calcined in air at different times and temperatures. The X-ray diffraction (XRD) data show that the sample calcined at 400°C crystallize as ferrite (monophase), but in an inverted spinel structure (high content of iron occupying manganese tetrahedral site and manganese occupying the iron octahedral site). The samples calcined at temperatures between 600°C and 900°C shows the secondary phase of hematite and the sample calcined at 1100oC shows to be monophase in ferrite with normal spinel structure. The monophase powders of ferrite showed a reduction in the surface area and an increasing in the pore size for higher calcination temperatures. The magnetic analysis show that the sample calcined at 400°C presents satisfactory magnetization at room temperature, however, it behaves as diamagnetic material at low temperatures (10K). The powder containing hematite, without the partial substitution of iron ions by manganese, showed to have low transition temperature, and consequently low magnetization at room temperature. The hematite, when partially substituted, provides materials with irregular magnetization at the saturation region. The powder calcined at 1100°C shows high magnetization either at room temperature or low temperature (10K)
Resumo:
Nowadays technological trend is based on finding materials that could support low weight with satisfactory mechanical properties and for this reason composite material became a very attractive topic in research projects all over the world. Due to its heterogenic properties, this type of material shows scatter in mechanical test results, especially in cyclic loading. Therefore it is important to predict its fatigue strength behaviour by statistic analysis, once fatigue causes approximately 90% of the failure in structural components. The present work aimed to investigate the fatigue behaviour of the Twill/Cycom 890 composite, which is carbon fiber reinforced with polymeric resin as matrix and manufactured via RTM process (Resin Transfer Molding). All samples were tested in different tensile level in triplicate in order to associate these values. The statistical analysis was conducted with Two-Parameter Weibull Distribution and then evaluated the fatigue life results for the composite. Weibull graphics were used to determine the scale and shape parameters. The S-N curve for the Twill/Cycom composite was drawn and indicated the number of cycles to occur the first damages in this material. The probability of failure was associated with material reliability, as shown in graphics for the different tensile levels and fatigue life. In addition, the laminate was evaluated by ultrasonic inspection showing a regular impregnation. The fractographic analysis conducted by SEM showed failure mechanisms for polymeric composites associated to cyclic loadings ... (Complete abstract click electronic access below)
Resumo:
In recent years a great worldwide interest has arisen for the development of new technologies that enable the use of products with less environmental impact. The replacement of synthetic fiber plants is a possibility very important because this fiber is renewable, biodegradable and few cost and cause less environmental impact. Given the above, this work proposes to develop polymeric composites of epoxy resin and study the behavior of these materials. Both, the epoxy resin used as matrix in the manufacture of sapegrass fiber composite, as tree composites formed by: epoxy/unidirectional sapegrass long fiber, 75% epoxy/25% short fiber, by volume, and 80% epoxy/20% short fiber, by volume, were characterized by bending, and the composites produced with short fibers random were inspected by Optical Microscopy and Acoustics Inspection (C-Scan). For the analysis of the sapegrass fiber morphology, composites 75% epoxy/25% short fiber (sheet chopped) and 80% epoxy/20% short fiber images were obtained by optical microscope and the adhesion between polymer/fiber was visualized. As results, the flexural strength of composites epoxy/unidirectional long fibers, 75% epoxy/25% short fiber and 80% epoxy/20% short fiber were 70.36 MPa, 21.26 MPa, 25.07 MPa, respectively. Being that composite showed that the best results was made up of long fibers, because it had a value of higher flexural strength than other composites analyzed
Resumo:
This work discusses the importance of the language varieties in the Spanish language to the process of teaching and learning Spanish as a foreign language (ELE), focusing on the approach, ie, how to deal with the phenomenon voseo in Brazilian textbooks. It presents a brief historical overview on the arising of this language and its implementation in Latin America. From an educational approach that values a good development of communicative competence, it’s driven to a presentation of the Spanish schoolbooks selected by PNLD for the year 2012, as well as an observation of activities that demonstrate the phenomenon called voseo, in other words, the use of the variety of the pronoun vos instead of tú for the treatment of the second person. Given the vast range of Spanish courses as a foreign language for high school students, and the growing interest of young people in learning a second language, this study addresses the importance of developing the communicative competence of a foreign language
Resumo:
Recently, research on energy harvesting has increased substantially. Many researchers have concentrated their efforts to find the best configuration for these systems and to optimize their output power. In the process of energy harvesting, the electric energy is obtained by converting mechanics energy created by an environment vibration source by a transducer, for example, a thin piezoceramic film. That vibration source is, for example, a beam suffering some mechanic force able to generate a vibration in it, an oscillating beam is the best properly used example. Different mechanisms of electromechanical coupling have been developed to harvesting devices, and a particular interest has been given to the use of models that transform the mechanical vibration into electrical current using a piezoelectric element. In this paper we propose a model to energy harvesting from vibrations, from an oscillating beam, including non-linearities in the piezoelectric coupling and a non-ideal excitation in the material. From this model, it was developed a system to obtain some results about the harvested power by the material. It was demonstrated that the power captured was influenced by the effect of the nonlinearities of the piezoelectric coupling, modifying the system dynamic behavior
Resumo:
This work proposes a study on the materials selections and processes for the manufacture of aircraft and showing a methodology to reduce the manufacturing cost. The DFMA can be understood as a methodology that aims at reducing manufacturing and assembly costs and coupled with the increase of product quality through design simplifications. The most commonly material used in the manufacture of aircraft is aluminum alloys due to these possess great structural strength, good elasticity, and being stainless having a low specific weight (about 1/3 that of steel), reducing the weight of the aircraft. A case study in which an operation in the process of verifying the quality was generating unnecessary costs time / man for the company was also developed. The problem solution was simple, just removing the attachment process. It was found that the DFMA methodology is extremely important for the simplification of processes and projects, contributing to the reduction of manufacturing costs of aircraft
Resumo:
Bi3NbO7 thin films were prepared by the polymeric precursor method. The precursor solutions were prepared with excess of bismuth ranging from 0% to 10% and the pH was controlled to be maintained between 8 and 9. This control was done by adding to the solution niobium and ethylene glycol. The final solution was clear and free of precipitation. After obtaining the precursor solution, has begun the process of characterization of powders with thermogravimetry (TG), differential thermal analysis and X-ray analysis (XRD). The films were obtained by the polymeric precursors, the method is advantageous because it is simple, and low cost involves steps and controlled stoichiometry. The films were annealed and characterized by XRD and SEM and also characterized according to their dialectics properties. We observed that the best results were obtained when the film is thermally at 800 ° C for two hours and 860 ° C for two hour. Under these conditions we obtain Bi3NbO7 thin films with good homogeneity, uniform distribution of the grains, but with the formation of secondary phase, which does not occur in treatments with lower temperature. The dielectric characterization showed that the produced film showed good characteristics with high dielectric constant and low loss
Resumo:
The increasing demand for devices for solid state applications in many technological areas has resulted in a high demand for new materials. Among these material have the advantage of being manufactured with different chemical compositions, and may have physical properties equal to or higher than the corresponding crystalline material. The aim of this paper was to produce borate glass system 50B2O3 – 15CuO – 20Li2O – 15X (X = Na2O, K2O, RbCl e Cs2O) to analyze the influence of the atomic radius of alkali in the physical properties of this glass system. The glasses were synthesized by the process of melting and molding. The characteristic temperatures were determined by the technique of scanning calorimetry (DSC). The non-crystalline was determined by x-ray diffraction. In order to determine the molar volume a density measurement by using the Archimedes method was used. The structural characterization was carried out using the technique of infrared spectroscopy
Resumo:
In this work polymeric composites reinforced with cotton fibers, from the textile industry, were developed in order to manufacture printed circuit boards. It was used expanded polystyrene (EPS) as a thermoplastic matrix by melting it. For the obtention of 10% and 15% of fiber volume fraction in cotton fibers composites, it was used wasted cotton fibers as an incentive of recycling and reusing of the domestic and industrial wastes as well as for Expanded Polystyrene(EPS). The mechanical properties of the composites were evaluated by tensile and flexural strength from standardized test methods. Composites were characterized by a Scanning Electron Microscopy (SEM), Thermogravimetry (TG/DTG), Differential Scanning Calorimetry (DSC) and dielectric analysis. The analysis of the results showed that fiber in the composite directly influenced in the thermal and mechanical properties
Resumo:
The goal of this work is to study the process of interaction of protons with matter through Monte Carlo simulation. For this purpose, it was employed the SRIM program (Stopping and Range of Ions in Matter ) and MCNPX (Monte Carlo N-Particle eXtended) v2.50. This work is going to support the development of a tomography system with protons. It was studied the interaction of proton with the follow materials: Polimethyl Mehacralate (PMMA), MS20 Tissue Substitute and water. This work employed energies in range of 50 MeV and 250 MeV, that is the range of clinical interest. The energy loss of proton after cross a material layer, the decreasing of its intensity, the angular and lateral de ection of incident beam, including and excluding nuclear interactions. This work is related with Medical Physics and Material Physics, like interaction of radiation with matter, particle transport phenomena, and the experimental methods in Nuclear Physics like simulation and computational by Monte Carlo method
Resumo:
Hybrid composites combining metal plates and laminates with continuous fiber reinforced polymer, called fiber-metal (CHMF), have been particularly attractive for aerospace applications, due mainly to their high mechanical strength and stiffness associated with low density. These laminates (CHMF) consist of a sandwich structure consisting of layers of polymer composites and metal plates, stacked alternately. This setting allows you to combine the best mechanical performance of polymer composites reinforced with long fibers, to the high toughness of metals. Environmental effects should always be considered in the design of structural components, because these materials in applications are submitted to the effects of moisture in the atmosphere, the large cyclical variations of temperature around 82 ° C to -56 ° C, and high effort mechanical. The specimens of fibermetal composite were prepared at EMBRAER with titanium plates and laminates of carbon fiber/epoxy resin. This study aims to evaluate the effect of different environmental conditions (water immersion, hygrothermal chamber and thermal shock) of laminate hybrid titanium/carbon fiber/epoxy resin. The effects of conditioning were evaluated by interlaminar shear tests - ILSS, tensile, and vibration free