993 resultados para Mapping Sites
Resumo:
Résumé: Valoriser le géopatrimoine par la médiation indirecte et la visualisation des objets géomorphologiques Le géopatrimoine regroupe des objets géologiques lato sensu auxquels certaines valeurs sont attribuées, en fonction de leur intérêt pour la science, de leur rareté, de leurs particularités culturelles ou écologiques, etc. Valoriser le géopatrimoine signifie avant tout faire partager cette approche aux non-spécialistes, en expliquant ce qui fait la valeur de ces objets. Cette valorisation peut s'effectuer, entre autres, sous la forme d'une activité touristique et contribuer ainsi au développement régional. Faire comprendre l'origine, la singularité et la valeur des formes du relief implique le recours à une communication éducative, désignée par le terme de médiation. Les implications de la dimension éducative du processus, comme la prise en compte des connaissances et attentes du public, la création d'un environnement favorable à l'apprentissage ou l'attractivité du contenu, sont souvent négligées. Du point de vue conceptuel, un modèle de la médiation indirecte (c'est-à-dire au moyen de supports médiatiques) a été proposé et appliqué au développement empirique de produits de médiation et à leur évaluation. Ce modèle ne garantit pas la réussite de la communication éducative, mais contribue à créer un cadre favorable au processus. De plus, plusieurs lignes directrices pour le choix du type de média et sa mise en forme ont été définies sur la base d'une compilation de résultats de la psychologie cognitive sur l'usage des médias pour l'apprentissage. Des méthodes qualitatives et quantitatives variées ont été mobilisées : enquêtes par questionnaire ex situ et in situ, auprès des visiteurs de géomorphosites de montagne, réalisation de médias interactifs testés ensuite auprès de divers publics (parcours enregistré, pré- et post-questionnaires) et entretiens collectifs. Les résultats obtenus éclairent divers aspects de la problématique. L'étude du public a montré, par exemple, que le géotourisme possède un réel public parmi les visiteurs des sites de montagnes : trois-quarts d'entre eux expriment de l'intérêt pour des explications sur la géologie et l'évolution du paysage. Cette thèse a exploré ces aspects liés au processus d'apprentissage en se focalisant sur les médias visuels, surtout interactifs. La plupart des médias visuels couramment utilisés en géomorphologie ont été considérés. Le développement de versions interactives de ces médias sous forme d'applications web a fourni un aperçu concret des possibilités des nouvelles technologies. Les utilisateurs apprécient en particulier a richesse du contenu, le haut degré d'interactivité et la variété de ces applications. De tels médias incitent à visiter le site naturel et semblent aussi répondre aux intérêts de publics variés. Abstract: Geoheritage promotion through non-personal interpretation and visualisation of geomorphological features Geoheritage concerns all geological features lato sensu to which some values are attributed, according to their scientific interest, their rarity, their cultural or ecological dimensions, etc. Geoheritage promotion implies sharing this point of view with non-specialists, explaining what gives value to those objects. Geotourism is one of the many ways to achieve geoheritage promotion, while contributing also to regional development. In order to make non-specialists understand the origin, the specificity and the value of landforms, educational communication is needed, that is called interpretation (French: médiation). This education dimension has several, and often neglected, implications, like taking into account public's knowledge and expectations, creating a favourable learning environment, attractive design, etc. From the conceptual point of view, a model for non-personal interpretation has been proposed and applied for the empirical development and for the assessment of interpretive products. This model does not guarantee success of educational communication, but help creating a favourable environment for this process. Moreover, some guidelines were defined from a compilation of several results of cognitive psychology on media use for learning. They guide the choice of the kind of media and its design. Several qualitative and quantitative methods were applied: survey questionnaires ex situ and in situ by mountain geomorphosites visitors, interactive medias developed and then tested by different kinds of users (with usertracking, pre- and post-survey questionnaires), group interviews. The results answered different aspects of the research questions. Visitor surveys revealed for example that geotourism could attract many visitors of mountain areas: three quarters of them say they are interested in getting explanations about geology and landscape (in particular its dynamic dimensions). This thesis examined those aspects with a focus on visual medias, both statics and interactive. Most of currently used medias in geomorphology were considered. Interactive versions of those medias were developed in web applications; they gave a concrete overview on the opportunities that new technologies offer. The content richness, the high interaction level and the diversity of the applications are the most liked aspects by the users. Such medias drive to visit the natural site and seem to correspond to the interests of various kinds of publics. Zusammenfassung: Aufwertung des erdwissenschaftlichen Erbes durch mediale Vermittlung und Visualisierung von geomorphologischen Objekten Das erdwissenschaftliche Erbe besteht aus geologischen Gegebenheiten lato sensu, denen entsprechend ihrer Bedeutung für die Wissenschaft, ihrer Seltenheit, ihrer kulturellen oder ökologischen Besonderheiten usw. bestimmte Werte zugeordnet werden. Das erdwissenschaftliche Erbe aufzuwerten bedeutet in erster Linie, diesen Ansatz Nichtspezialisten näher zu bringen, indem ihnen erklärt wird, was den Wert dieser Gegebenheiten ausmacht. Dies kann etwa im Rahmen eines touristischen Angebots geschehen und so die regionale Entwicklung unterstützen. Um Entstehung, Besonderheit und Wert von Geländeformen verständlich zu machen, wird eine pädagogische Kommunikationsform verwendet, die als mediale Vermittlung (franz. médiation) bezeichnet wird. Die Bedeutung der pädagogischen Dimension des Vermittlungsprozesses wie etwa der Einbezug des Wissens und der Erwartungen des Publikums, die Gestaltung eines positiven Lernklimas oder die Attraktivität des Inhalts wird oft vernachlässigt. Auf konzeptueller Ebene wurde ein Modell der indirekten Interpretation erarbeitet (d. h. anhand von Medien), das bei der empirischen Entwicklung der Interpretationsprodukte und ihrer Evaluation Anwendung fand. Dieses Modell garantiert zwar nicht den Erfolg der pädagogischen Kommunikation. Es trägt aber dazu bei, einen für den Prozess günstigen Kontext zu schaffen. Des Weiteren wurden mehrere Richtlinien für die Wahl des Medientyps und dessen Ausgestaltung anhand einer Zusammenstellung von Resultaten der kognitiven Psychologie über den Gebrauch von Medien in Lernprozessen definiert. Es wurden verschiedene qualitative und quantitative Methoden eingesetzt: Befragung mittels Fragebogen der Besucher von geomorphologischen Geotopen im Gebirge - ex situ und in situ -, Erarbeitung von interaktiven Medien, die anschliessend anhand verschiedener Zielgruppen gestestet wurden (Aufnahme des Besuchparcours, Vor- und Nachfragebögen) sowie kollektive Interviews. Die Ergebnisse geben Aufschluss zu verschiedenen Aspekten der Fragestellung. Die Befragung des Publikums hat zum Beispiel deutlich gemacht, dass der Geotourismus unter den Besuchern von Berggebieten tatsächlich auf eine Nachfrage stösst: drei Viertel von ihnen zeigen ein Interesse für Erläuterungen zur Geologie und der Landschaftsentwicklung. Die vorliegende Doktorarbeit hat die genannten Aspekte der Lernprozesse untersucht, wobei der Fokus auf visuellen, insbesondere interaktiven Medien lag. Die meisten gängigen visuellen Medien der Geomorphologie wurden berücksichtigt. Die Entwicklung von interaktiven Versionen dieser Medien in Form von Web-Anwendungen hat die Möglichkeiten der neuen Technologien veranschaulicht. Die Benutzer schätzten insbesondere die Vielfalt des Inhalts, die hohe Interaktivität und die Diversität dieser Anwendungen. Solche Medien laden dazu ein, ein Naturgebiet zu besuchen und scheinen den Interessen der verschiedenen Publikumsgruppen entgegenzukommen.
Resumo:
Background: A rapid phage display method for the elucidation of cognate peptide specific ligand for receptors is described. The approach may be readily integrated into the interface of genomic and proteomic studies to identify biologically relevant ligands.Methods: A gene fragment library from influenza coat protein haemagglutinin (HA) gene was constructed by treating HA cDNA with DNAse I to create 50 ¿ 100 bp fragments. These fragments were cloned into plasmid pORFES IV and in-frame inserts were selected. These in-frame fragment inserts were subsequently cloned into a filamentous phage display vector JC-M13-88 for surface display as fusions to a synthetic copy of gene VIII. Two well characterized antibodies, mAb 12CA5 and pAb 07431, directed against distinct known regions of HA were used to pan the library. Results: Two linear epitopes, HA peptide 112 ¿ 126 and 162¿173, recognized by mAb 12CA5 and pAb 07431, respectively, were identified as the cognate epitopes.Conclusion: This approach is a useful alternative to conventional methods such as screening of overlapping synthetic peptide libraries or gene fragment expression libraries when searching for precise peptide protein interactions, and may be applied to functional proteomics.
Resumo:
It is estimated that around 230 people die each year due to radon (222Rn) exposure in Switzerland. 222Rn occurs mainly in closed environments like buildings and originates primarily from the subjacent ground. Therefore it depends strongly on geology and shows substantial regional variations. Correct identification of these regional variations would lead to substantial reduction of 222Rn exposure of the population based on appropriate construction of new and mitigation of already existing buildings. Prediction of indoor 222Rn concentrations (IRC) and identification of 222Rn prone areas is however difficult since IRC depend on a variety of different variables like building characteristics, meteorology, geology and anthropogenic factors. The present work aims at the development of predictive models and the understanding of IRC in Switzerland, taking into account a maximum of information in order to minimize the prediction uncertainty. The predictive maps will be used as a decision-support tool for 222Rn risk management. The construction of these models is based on different data-driven statistical methods, in combination with geographical information systems (GIS). In a first phase we performed univariate analysis of IRC for different variables, namely the detector type, building category, foundation, year of construction, the average outdoor temperature during measurement, altitude and lithology. All variables showed significant associations to IRC. Buildings constructed after 1900 showed significantly lower IRC compared to earlier constructions. We observed a further drop of IRC after 1970. In addition to that, we found an association of IRC with altitude. With regard to lithology, we observed the lowest IRC in sedimentary rocks (excluding carbonates) and sediments and the highest IRC in the Jura carbonates and igneous rock. The IRC data was systematically analyzed for potential bias due to spatially unbalanced sampling of measurements. In order to facilitate the modeling and the interpretation of the influence of geology on IRC, we developed an algorithm based on k-medoids clustering which permits to define coherent geological classes in terms of IRC. We performed a soil gas 222Rn concentration (SRC) measurement campaign in order to determine the predictive power of SRC with respect to IRC. We found that the use of SRC is limited for IRC prediction. The second part of the project was dedicated to predictive mapping of IRC using models which take into account the multidimensionality of the process of 222Rn entry into buildings. We used kernel regression and ensemble regression tree for this purpose. We could explain up to 33% of the variance of the log transformed IRC all over Switzerland. This is a good performance compared to former attempts of IRC modeling in Switzerland. As predictor variables we considered geographical coordinates, altitude, outdoor temperature, building type, foundation, year of construction and detector type. Ensemble regression trees like random forests allow to determine the role of each IRC predictor in a multidimensional setting. We found spatial information like geology, altitude and coordinates to have stronger influences on IRC than building related variables like foundation type, building type and year of construction. Based on kernel estimation we developed an approach to determine the local probability of IRC to exceed 300 Bq/m3. In addition to that we developed a confidence index in order to provide an estimate of uncertainty of the map. All methods allow an easy creation of tailor-made maps for different building characteristics. Our work is an essential step towards a 222Rn risk assessment which accounts at the same time for different architectural situations as well as geological and geographical conditions. For the communication of 222Rn hazard to the population we recommend to make use of the probability map based on kernel estimation. The communication of 222Rn hazard could for example be implemented via a web interface where the users specify the characteristics and coordinates of their home in order to obtain the probability to be above a given IRC with a corresponding index of confidence. Taking into account the health effects of 222Rn, our results have the potential to substantially improve the estimation of the effective dose from 222Rn delivered to the Swiss population.
Resumo:
Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.
Resumo:
BACKGROUND: To understand cancer-related modifications to transcriptional programs requires detailed knowledge about the activation of signal-transduction pathways and gene expression programs. To investigate the mechanisms of target gene regulation by human estrogen receptor alpha (hERalpha), we combine extensive location and expression datasets with genomic sequence analysis. In particular, we study the influence of patterns of DNA occupancy by hERalpha on expression phenotypes. RESULTS: We find that strong ChIP-chip sites co-localize with strong hERalpha consensus sites and detect nucleotide bias near hERalpha sites. The localization of ChIP-chip sites relative to annotated genes shows that weak sites are enriched near transcription start sites, while stronger sites show no positional bias. Assessing the relationship between binding configurations and expression phenotypes, we find binding sites downstream of the transcription start site (TSS) to be equally good or better predictors of hERalpha-mediated expression as upstream sites. The study of FOX and SP1 cofactor sites near hERalpha ChIP sites shows that induced genes frequently have FOX or SP1 sites. Finally we integrate these multiple datasets to define a high confidence set of primary hERalpha target genes. CONCLUSION: Our results support the model of long-range interactions of hERalpha with the promoter-bound cofactor SP1 residing at the promoter of hERalpha target genes. FOX motifs co-occur with hERalpha motifs along responsive genes. Importantly we show that the spatial arrangement of sites near the start sites and within the full transcript is important in determining response to estrogen signaling.
Resumo:
BACKGROUND: Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has only poorly been characterized to date. In particular, a precise membrane topology is thus far elusive. Here, we explored a novel strategy to map the membrane topology of HCV NS4B. METHODS: Selective permeabilization of the plasma membrane, maleimide-polyethyleneglycol (mPEG) labeling of natural or engineered cysteine residues and immunoblot analyses were combined to map the membrane topology of NS4B. Cysteine substitutions were introduced at carefully selected positions within NS4B and their impact on HCV RNA replication and infectious virus production analyzed in cell culture. RESULTS: We established a panel of viable HCV mutants with cysteine substitutions at strategic positions within NS4B. These mutants are infectious and replicate to high levels in cell culture. In parallel, we adapted and optimized the selective permeabilization and mPEG labeling techniques to Huh-7 human hepatocellular carcinoma cells which can support HCV infection and replication. CONCLUSIONS: The newly established experimental tools and techniques should allow us to refine the membrane topology of HCV NS4B in a physiological context. The expected results should enhance our understanding of the functional architecture of the HCV replication complex and may provide new opportunities for antiviral intervention in the future.
Resumo:
Information about the genomic coordinates and the sequence of experimentally identified transcription factor binding sites is found scattered under a variety of diverse formats. The availability of standard collections of such high-quality data is important to design, evaluate and improve novel computational approaches to identify binding motifs on promoter sequences from related genes. ABS (http://genome.imim.es/datasets/abs2005/index.html) is a public database of known binding sites identified in promoters of orthologous vertebrate genes that have been manually curated from bibliography. We have annotated 650 experimental binding sites from 68 transcription factors and 100 orthologous target genes in human, mouse, rat or chicken genome sequences. Computational predictions and promoter alignment information are also provided for each entry. A simple and easy-to-use web interface facilitates data retrieval allowing different views of the information. In addition, the release 1.0 of ABS includes a customizable generator of artificial datasets based on the known sites contained in the collection and an evaluation tool to aid during the training and the assessment of motif-finding programs.
Resumo:
The IncP alpha promiscuous plasmid (R18, R68, RK2, RP1 and RP4) comprises 60,099 bp of nucleotide sequence, encoding at least 74 genes. About 40 kb of the genome, designated the IncP core and including all essential replication and transfer functions, can be aligned with equivalent sequences in the IncP beta plasmid R751. The compiled IncP alpha sequence revealed several previously unidentified reading frames that are potential genes. IncP alpha plasmids carry genetic information very efficiently: the coding sequences of the genes are closely packed but rarely overlap, and occupy almost 86% of the genome's nucleotide sequence. All of the 74 genes should be expressed, although there is as yet experimental evidence for expression of only 60 of them. Six examples of tandem-in-frame initiation sites specifying two gene products each are known. Two overlapping gene arrangements occupy different reading frames of the same region. Intergenic regions include most of the 25 promoters; transcripts are usually polycistronic. Translation of most of the open reading frames seems to be initiated independently, each from its own ribosomal binding and initiation site, although, a few cases of coupled translation have been reported. The most frequently used initiation codon is AUG but translation for a few open reading frames begins at GUG or UUG. The most common stop-codon is UGA followed by UAA and then UAG. Regulatory circuits are complex and largely dependent on two components of the central control operon. KorA and KorB are transcriptional repressors controlling at least seven operons. KorA and KorB act synergistically in several cases by recognizing and binding to conserved nucleotide sequences. Twelve KorB binding sites were found around the IncP alpha sequence and these are conserved in R751 (IncP beta) with respect to both sequence and location. Replication of IncP alpha plasmids requires oriV and the plasmid-encoded initiator protein TrfA in combination with the host-encoded replication machinery. Conjugative plasmid transfer depends on two separate regions occupying about half of the genome. The primary segregational stability system designated Par/Mrs consists of a putative site-specific recombinase, a possible partitioning apparatus and a post-segregational lethality mechanism, all encoded in two divergent operons. Proteins related to the products of F sop and P1 par partitioning genes are separately encoded in the central control operon.
Resumo:
The objective of this work was to investigate glyphosate adsorption by soils and its relationship with unoccupied binding sites for phosphate adsorption. Soil samples of three Chilean soils series - Valdivia (Andisol), Clarillo (Inceptisol) and Chicureo (Vertisol) - were incubated with different herbicide concentrations. Glyphosate remaining in solution was determined by adjusting a HPLC method with a UV detector. Experimental maximum adsorption capacity were 15,000, 14,300 and 4,700 mg g¹ for Valdivia, Clarillo, and Chicureo soils, respectively. Linear, Freundlich, and Langmuir models were used to describe glyphosate adsorption. Isotherms describing glyphosate adsorption differed among soils. Maximum adjusted adsorption capacity with the Langmuir model was 231,884, 17,874 and 5,670 mg g-1 for Valdivia, Clarillo, and Chicureo soils, respectively. Glyphosate adsorption on the Valdivia soil showed a linear behavior at the range of concentrations used and none of the adjusted models became asymptotic. The high glyphosate adsorption capacity of the Valdivia soil was probably a result of its high exchangeable Al, extractable Fe, and alophan and imogolite clay type. Adsorption was very much related to phosphate dynamics in the Valdivia soil, which showed the larger unoccupied phosphate binding sites. However relationship between unoccupied phosphate binding sites and glyphosate adsorption in the other two soils (Clarillo and Chicureo) was not clear.
Resumo:
The gibbon genome exhibits extensive karyotypic diversity with an increased rate of chromosomal rearrangements during evolution. In an effort to understand the mechanistic origin and implications of these rearrangement events, we sequenced 24 synteny breakpoint regions in the white-cheeked gibbon (Nomascus leucogenys, NLE) in the form of high-quality BAC insert sequences (4.2 Mbp). While there is a significant deficit of breakpoints in genes, we identified seven human gene structures involved in signaling pathways (DEPDC4, GNG10), phospholipid metabolism (ENPP5, PLSCR2), beta-oxidation (ECH1), cellular structure and transport (HEATR4), and transcription (ZNF461), that have been disrupted in the NLE gibbon lineage. Notably, only three of these genes show the expected evolutionary signatures of pseudogenization. Sequence analysis of the breakpoints suggested both nonclassical nonhomologous end-joining (NHEJ) and replication-based mechanisms of rearrangement. A substantial number (11/24) of human-NLE gibbon breakpoints showed new insertions of gibbon-specific repeats and mosaic structures formed from disparate sequences including segmental duplications, LINE, SINE, and LTR elements. Analysis of these sites provides a model for a replication-dependent repair mechanism for double-strand breaks (DSBs) at rearrangement sites and insights into the structure and formation of primate segmental duplications at sites of genomic rearrangements during evolution.
Resumo:
Automatic environmental monitoring networks enforced by wireless communication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influenced by the relief. The article shows how these relations, possibly regionalized and non-linear, can be modelled from data using the information from digital elevation models. The particular illustration of the developed methodology concerns the mapping of temperatures (including the situations of Föhn and temperature inversion) given the measurements taken from the Swiss meteorological monitoring network. The range of the methods used in the study includes data-driven feature selection, support vector algorithms and artificial neural networks.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.