969 resultados para Macrophages péritonéaux
Resumo:
A marine model of oral candidiasis was used to show that nitric oxide (NO) is involved in host resistance to infection with Candida albicans in infection-'resistant' BALB/c and infection-'prone' DBA/2 mice. Following infection, increased NO production was detected in saliva. Postinfection samples of saliva inhibited the growth of yeast in vitro. Treatment with N-G-monomethyl-L-arginine (MMLA), an inhibitor of NO synthesis, led to reduced NO production, which correlated with an increase in C. albicans growth. Reduction in NO production following MMLA treatment correlated with an abrogation of interleukin-4 (IL-4), but not interferon-gamma (IFN-gamma), mRNA gene expression in regional lymph node cells. Down-regulation of IL-4 production was accompanied with an increase in IFN-gamma production in infection-'prone' DBA/2 mice. There was a functional relationship between IL-4 and NO production in that mice treated with anti-IL-4 monoclonal antibody showed a marked inhibition of NO production in saliva and in culture of cervical lymph node cells stimulated with C albicans antigen. The results Support previous conclusions that IL-4 is associated with resistance to oral candidiasis and suggest that NO is involved in controlling colonization of the oral mucosal surface with C albicans.
Resumo:
Analogues of the potent, conformationally biased, decapeptide agonist of human C5a anaphylatoxin, C5a(65-74)Y65,F67,P69,P71,D-Ala73 (YSFKPMPLaR, peptide 54), were synthesized with methyl groups occupying specific C5a,, amide nitrogen atoms along the peptide backbone. This N-methylation induced crucial extended backbone conformations in a manner similar to the two Pro residues, but without eliminating the contributions made by the side-chain of the residue for which Pro was substituted. The presence of backbone N-methyl groups on peptide 54 analogues had pronounced detrimental effects on the ability to bind and activate C5aRs expressed on human PMNs, but not on the ability to contract smooth muscle of human umbilical artery. Several N-methylated analogues of peptide 54 (peptides 56, 67, 124, 125, and 137) were significantly more selective for smooth muscle contraction, which is mediated by tissue resident macrophages, than for enzyme release from PMNs. Indeed, peptide 67, YSFKDMP(MeL)aR was almost 3000-fold more selective for smooth muscle contraction than for PMN enzyme release. Consistent with these differential activities was the observation that peptide 67 expressed a significantly greater binding affinity to C5aRs expressed on rat macrophages than on rat PMNs. This differential activity was also observed in vivo in the rat where peptide 67 induced a hypotensive response similar to peptide 54 and rhuC5a, but without accompanying neutropenia. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Dendritic cells (DCs) are important targets for human immunodeficiency virus (HIV) because of their roles during transmission and also maintenance of immune competence. Furthermore, DCs are a key cell in the development of HIV vaccines. In both these settings the mechanism of binding of the HIV envelope protein gp120 to DCs is of importance. Recently a single C-type lectin receptor (CLR), DC-SIGN, has been reported to be the predominant receptor on monocyte-derived DCs (MD-DCs) rather than CD4. In this study a novel biotinylated gp120 assay was used to determine whether CLR or CD4 were predominant receptors on MDDCs and ex vivo blood DCs. CLR bound more than 80% of gp120 on MDDCs, with residual binding attributable to CD4, reconfirming that CLRs were the major receptors for gp120 on MDDCs. However, in contrast to recent reports, gp120 binding to at least 3 CLRs was observed: DC-SIGN, mannose receptor, and unidentified trypsin resistant CLR(s). In marked contrast, freshly isolated and cultured CD11c(+ve) and CD11c(-ve) blood DCs only bound gp120 via CD4. In view of these marked differences between MDDCs and blood DCs, HIV capture by DCs and transfer mechanisms to T cells as well as potential antigenic processing pathways will need to be determined for each DC phenotype. (Blood. 2001;98:2482-2488) (C) 2001 by The American Society of Hematology.
Resumo:
Flotillin-1 was recently shown to be enriched on detergent-resistant domains of the plasma membrane called lipid rafts. These rafts, enriched in sphingolipids and cholesterol, sequester certain proteins while excluding others. Lipid rafts have been implicated in numerous cellular processes including signal transduction, membrane trafficking and molecular sorting. In this study, we demonstrate both morphologically and biochemically that lipid rafts are present on phagosomes, These structures are enriched in flotillin-1 and devoid of the main phagosomes membrane protein lysosomal-associated membrane protein (LAMP1), The flotillin-1 present on phagosomes does not originate from the plasma membrane during phagocytosis but accumulates gradually on maturing phagosomes, Treatment with bafilomycin A1, a compound that inhibits the proton pump ATPase and prevents the fusion of phagosomes with late endocytic organelles, prevents the acquisition of flotillin-1 by phagosomes, indicating that this protein might be recruited on phagosomes from endosomal organelles. A proteomic characterization of the lipid rafts of phagosomes indicates that actin, the alpha- and beta -subunits of heterotrimeric G proteins, as well as subunits of the proton pump V-ATPase are among the constituents of these domains. Remarkably, the intracellular parasite Leishmania donovani can actively inhibit the acquisition of flotillin-1-enriched lipid rafts by phagosomes and the maturation of these organelles. These results indicate that specialized functions required for phagolysosome biogenesis may occur at focal points on the phagosome membrane, and therefore represent a potential target of intracellular pathogens.
Resumo:
The microphthalmia transcription factor (MITF), a basic-helix-loop-helix zipper factor, regulates distinct target genes in several cell types. We hypothesized that interaction with the Ets family factor PU.1, whose expression is limited to hematopoietic cells, might be necessary for activation of target genes like tartrate-resistant acid phosphatase (TRAP) in osteoclasts. Several lines of evidence were consistent with this model. The combination of MITF and PU.1 synergistically activated the TRAP promoter in transient assays. This activation was dependent on intact binding sites for both factors in the TRAP promoter. MITF and PU.1 physically interacted when coexpressed in COS cells or in vitro when purified recombinant proteins were studied. The minimal regions of MITF and PU.1 required for the interaction were the basic-helix-loop-helix zipper domain and the Ets DNA binding domain, respectively. Significantly, mice heterozygous for both the mutant mi allele and a PU.1 null allele developed osteopetrosis early in life which resolved with age. The size and number of osteoclasts were not altered in the double heterozygous mutant mice, indicating that the defect lies in mature osteoclast function. Taken in total, the results afford an example of how lineage-specific gene regulation can be achieved by the combinatorial action of two broadly expressed transcription factors.
Resumo:
T cells are present in the inflammatory infiltrates of periodontal disease lesions and require antigen presentation by antigen-presenting cells (APCs). While it is still not known whether Th1 or Th2 cells predominate in these lesions, it has been reported that different APCs may induce activation of different T-cell subsets. An immunoperoxidase technique was used to investigate the presence of CD1a+, CMRF-44+, CMRF-58+ and CD83+ dendritic cells, CD14+ macrophages or dendritic cell precursors and CD19+ B cells in gingival biopsies from 21 healthy or gingivitis and 25 periodontitis subjects. The samples were divided into three groups according to the size of infiltrate (group 1, small infiltrates; group 2, medium infiltrates; group 3, extensive infiltrates). The presence of numerous CD1a+ Langerhans cells was noted in the epithelium with no differences between the healthy/gingivitis and periodontitis groups. The percentage of CD83+ dendritic cells in the infiltrates was higher than the percentage of CD1a+, CMRF-44+ or CMRF-58+ dendritic cells. Endothelial cells positive for CD83 were found predominantly in areas adjacent to infiltrating cells, CD83+ dendritic cells being noted in the region of CD83+ endothelium. The percentage of CD14+ cells in the inflammatory infiltrates was similar to that of CD83+ dendritic cells. B cells were the predominant APC in group 2 and 3 tissues. The percentage of B cells in group 3 periodontitis lesions was increased in comparison with group 1 periodontitis tissues and also in comparison with group 3 healthy/gingivitis sections. Functional studies are required to determine the roles of different APC subpopulations in periodontal disease.
Resumo:
Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST). Rabbit aortic SMC in primary culture exhibited NDST enzyme activity and expressed NDST-1 in their Golgi apparatus, with maximal expression in SMC 2 days after dispersal in primary culture confirmed by Western blot analysis. Endothelial cells, macrophages and fibroblasts expressed NDST-1 but had generally less intense staining than SMC, although SMC expression decreased with culture. The uninjured rat aorta also showed widespread expression of NDST-1. After balloon de-endothelialisation, NDST-1 could not be detected in SMC of the neointima in the early stages of neointimal formation, but was re-expressed at later time points (after 12 weeks). In human coronary arteries, SMC of the media and the diffuse intimal thickening expressed NDST-1, while SMC in the atherosclerotic plaque were negative for NDST-1. We conclude that SMC may regulate their heparan sulphate sulphation at the level of expression of the enzyme heparan sulphate NDST in a manner related to their phenotypic state.
Resumo:
Increasingly, cystic fibrosis (CF) is regarded as an inflammatory disorder where the response of the lung to Pseudomonas aeruginosa is exaggerated as a consequence of processes mediated by the product of the CF gene, CFTR. Of importance to any gene-replacement strategy for treatment of CF is the identification of the cell type(s) within the lung milieu that need to be corrected and an indication whether this is sufficient to restore a normal inflammatory response and bacterial clearance. We generated G551D CF mice transgenically expressing the human CFTR gene in two tissue compartments previously demonstrated to mediate a CFTR-dependent inflammatory response: lung epithelium and alveolar macrophages. Following chronic pulmonary infection with P. aeruginosa, CF mice with epithelial-expressed but not macrophage-specific CFTR showed an improvement in pathogen clearance and inflammatory markers compared with control CF animals. Additionally, these data indicate the general role for epithelial cell-mediated events in the response of the lung to bacterial pathogens and the importance of CFTR in mediating these processes.
Resumo:
The mononuclear phagocyte system (MPS) was defined as a family of cells comprising bone marrow progenitors, blood monocytes, and tissue macrophages. In this review, we briefly consider markers for cells of this lineage in the mouse, especially the F4/80 surface antigen and the receptor for macrophage colony-stimulating factor. The concept of the MPS is challenged by evidence that there is a separate embryonic phagocyte lineage, the blurring of the boundaries between macrophages and other cells types arising from phenotypic plasticity and transdifferentiation, and evidence of local renewal of tissue macrophage populations as opposed to monocyte recruitment. Nevertheless, there is a unity to cells of the MPS suggested by their location, morphology, and shared markers. We discuss the origins of macrophage heterogeneity and argue that macrophages and antigen-representing dendritic cells are closely related and part of the MPS.
Resumo:
This study examined the nature of the infiltrating cells in Porphyromonas gingivalis-induced lesions and immunoglobulins in the serum samples of BALB/c (H-2(d)), C57BL6 (H-2(b)), DBA/2J (H-2(d)) and CBA/CaH (H-2(k)) mice. Mice were immunized intraperitoneally with P. gingivalis outer membrane antigens or sham-immunized with phosphate-buffered saline followed by subcutaneous challenge with live organisms 1 week after the final immunization. The resulting skin abscesses were excised 7 days later, cryostat sections cut and an immunoperoxidase method used to detect the presence of CD4(+) and CD8(+) T-cell subsets, CD14(+) macrophages and CD19(+) B cells. Peroxidase positive neutrophils and IgG1- and IgG2a-producing plasma cells were also identified. Anti P. gingivalis IgG1 and IgG2a subclass antibodies were determined in serum obtained by cardiac puncture. Very few CD8(+) T cells and CD19(+) B cells were found in any of the lesions. The percentages of CD4(+) cells, CD14(+) cells and neutrophils were similar in lesions of immunized BALB/c and C57BL6 mice, with a trend towards a higher percentage of CD14(+) cells in sham-immunized mice. The percentage of CD14(+) cells was higher than that of CD4(+) cells in immunized compared with sham-immunized DBA/2J mice. The percentages of CD4(+) and CD14(+) cells predominated in immunized CBA/CaH mice and CD4(+) cells in sham-immunized CBA/CaH mice. The percentage of neutrophils in immunized CBA/CaH mice was significantly lower than that of CD14(+) cells and CD4(+) cells in sham-immunized mice. IgG1(+) plasma cells were more dominant than IgG2a(+) cells in immunized BALB/c, C57BL6 and DBA/2J mice, whereas IgG2a(+) plasma cells were more obvious in sham-immunized mice. IgG2a(+) plasma cells were predominant in immunized and sham-immunized CBA/CaH mice. In the serum, specific anti-P. gingivalis IgG2a antibody levels (Th1 response) were higher than IgG1 levels (Th2 response) in sham-immunized CBA/CaH and DBA/2J mice. In immunized BALB/c mice, IgG2a levels were lower than IgG1 levels, while IgG2a levels were higher in immunized C57BL6 mice. In conclusion, this study has shown differences in the proportion of infiltrating leukocytes and in the subclasses of immunoglobulin produced locally and systemically in response to P. gingivalis in different strains of mice, suggesting a degree of genetic control over the response to P. gingivalis.
Resumo:
Background/Aims: The role of cytokines in hepatic injury has been examined for many liver diseases however little is known of the cytokine involvement in haemochromatosis. The aim of the current study was to examine the hepatic gene expression of potential proinflammatory and profibrogenic cytokines in haemochromatosis. Methods: Interferon-gamma, interleukin-10, transforming growth factor-beta(1) and tumor necrosis factor-alpha mRNA expression was assessed in liver tissue from 20 haemochromatosis patients, eight controls and eight chronic hepatitis C patients. To assess the immunophenotype of the inflammatory infiltrate in haemochromatosis, liver sections were subjected to immunohistochemistry using markers for macrophages (CD68, HAM56, MAC387) or T cells (CD3 and CD45RO). Results: Interferon-gamma mRNA was increased in both haemochromatosis (0.29+/-0.08%, P=0.01) and hepatitis C patients (1.02+/-0.32%, P=0.03) compared to controls (0.04+/-0.01%). Interleukin-10 mRNA was significantly decreased in both haemochromatosis and hepatitis C patients (0.01+/-0.003%, P=0.008 and 0.03+/-0.015%, P=0.02, respectively) compared to controls (0.12+/-0.01%). CD3 positive T-cell number was significantly correlated with increasing hepatic iron concentration (r=0.56, P=0.03). Conclusions: This study has demonstrated a distinct pattern of cytokine gene expression in haemochromatosis, which resembles that of inflammatory conditions such as chronic hepatitis C. These factors may play a role in the development of iron-induced hepatic fibrosis in haemochromatosis. (C) 2003 European Association for the Study of the Liver. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response [1, 2]. TNFalpha plays a key role in inflammatory disease [3]; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types [4, 5] was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.
Resumo:
Este trabalho descreve a investigação química e biológica do extrato bruto e das partições hexano e acetato de etila, das folhas de Pyrostegia venusta (Ker Gawl.) Miers, popularmente conhecida como “cipó de São João”. P. venusta é classificada botanicamente como uma liana de porte mediano, tendo como característica uma exuberante floração vermelha, e por isso, sendo utilizada como planta ornamental. Essa planta possui uma larga utilização na medicina popular, sendo utilizada no tratamento de vitiligo, diarreia, bronquite, resfriado, icterícia e infecções. Os objetivos deste trabalho foram identificar as classes de metabólitos secundários presentes, avaliar o potencial antioxidante das amostras de P. vesnuta (extrato bruto, frações acetato de etila e hexano), quantificar o teor de flavonoides no extrato bruto, verificar a segurança do uso dessa planta, em termos de viabilidade celular (VC) frente à macrófagos murinos (RAW 264.7) (ensaio de imunotoxicidade). Adicionalmente os resultados de viabilidade celular foram comparados com quatro compostos anti-inflamatórios comerciais (ácido acetilsalicílico, indometacina, betametasona e piroxicam), e testar o extrato bruto quanto à inibição de catepsinas K e V. Os testes de identificação fitoquímica confirmaram a presença de flavonoides, cumarinas e esteroides nas amostras. A metodologia cromatográfica associada à análises por espectrometria de massas, levou a identificação dos compostos: fitol (1), sitosterol (2), estigmasterol (3) e campesterol (4). O extrato bruto demonstrou ter atividade inibitória frente as duas catepsinas testadas (K e V). A fração acetato de etila foi a que apresentou maior atividade antioxidante nas metodologias de inibição do radical DPPH (IC50 38,62 μg/mL) e radical ABTS (IC50 27,58 μg/mL). O teor de flavonoides total para o extrato bruto foi de 148,5±7,65 μg/mg (14,85 % (m/m)), o que justifica a observada atividade antioxidante, já que estes possuem atividade antioxidante. As amostras de P. venusta obtiveram valores de VC maiores do que os anti-inflamatórios comerciais, estes apresentaram VC abaixo do controle negativo, assim como o extrato bruto e a fração acetato de etila, a fração hexano obteve valores acima do controle negativo, sendo estes os maiores resultados de VC entre as amostras de P. venusta.
Resumo:
The conjugation of antigens with ligands of pattern recognition receptors (PRR) is emerging as a promising strategy for the modulation of specific immunity. Here, we describe a new Escherichia coli system for the cloning and expression of heterologous antigens in fusion with the OprI lipoprotein, a TLR ligand from the Pseudomonas aeruginosa outer membrane (OM). Analysis of the OprI expressed by this system reveals a triacylated lipid moiety mainly composed by palmitic acid residues. By offering a tight regulation of expression and allowing for antigen purification by metal affinity chromatography, the new system circumvents the major drawbacks of former versions. In addition, the anchoring of OprI to the OM of the host cell is further explored for the production of novel recombinant bacterial cell wall-derived formulations (OM fragments and OM vesicles) with distinct potential for PRR activation. As an example, the African swine fever virus ORF A104R was cloned and the recombinant antigen was obtained in the three formulations. Overall, our results validate a new system suitable for the production of immunogenic formulations that can be used for the development of experimental vaccines and for studies on the modulation of acquired immunity.
Resumo:
Acetylcholine (ACh) has been shown to exert an anti-inflammatory function by down-modulating the expression of pro-inflammatory cytokines. Its availability can be regulated at different levels, namely at its synthesis and degradation steps. Accordingly, the expression of acetylcholinesterase (AChE), the enzyme responsible for ACh hydrolysis, has been observed to be modulated in inflammation. To further address the mechanisms underlying this effect, we aimed here at characterizing AChE expression in distinct cellular types pivotal to the inflammatory response. This study was performed in the human acute leukaemia monocytyc cell line, THP-1, in human monocyte-derived primary macrophages and in human umbilical cord vein endothelial cells (HUVEC). In order to subject these cells to inflammatory conditions, THP-1 and macrophage were treated with lipopolysaccharide (LPS) from E.coli and HUVEC were stimulated with the tumour necrosis factor α (TNF-α). Our results showed that although AChE expression was generally up-regulated at the mRNA level under inflammatory conditions, distinct AChE protein expression profiles were aurprisingly observed among the distinct cellular types studied. Altogether, these results argue for the existence of cell specific mechanisms that regulate the expression of acetylcholinesterase in inflammation.