987 resultados para MODEL REUSE
Resumo:
A classical condition for fast learning rates is the margin condition, first introduced by Mammen and Tsybakov. We tackle in this paper the problem of adaptivity to this condition in the context of model selection, in a general learning framework. Actually, we consider a weaker version of this condition that allows one to take into account that learning within a small model can be much easier than within a large one. Requiring this “strong margin adaptivity” makes the model selection problem more challenging. We first prove, in a general framework, that some penalization procedures (including local Rademacher complexities) exhibit this adaptivity when the models are nested. Contrary to previous results, this holds with penalties that only depend on the data. Our second main result is that strong margin adaptivity is not always possible when the models are not nested: for every model selection procedure (even a randomized one), there is a problem for which it does not demonstrate strong margin adaptivity.
Resumo:
The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.
Resumo:
Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs
An approach to statistical lip modelling for speaker identification via chromatic feature extraction
Resumo:
This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results
Resumo:
Organizations invest heavily in Customer Relationship Management (CRM) and Supply Chain Management (SCM) systems, and their related infrastructure, presumably expecting positive benefits to the organization. Assessing the benefits of such systems is an important aspect of managing such systems. Given the substantial differences between CRM and SCM systems with traditional intra-organizational applications, existing Information Systems benefits measurement models and frameworks are ill-suited to gauge CRM and SCM benefits. This paper reports the preliminary findings of a research that seeks to develop a measurement model to assess benefits of CRM and SCM applications. The a-priori benefits measurement model is developed reviewing the 55 academic studies and 40 practitioner papers. The review of related literature yielded 606 benefits, which were later synthesized into 74 mutually exclusive benefit measures of CRM and SCM applications arranged under five dimensions.
Resumo:
The importance of reflection in higher education, and across disciplinary fields is widely recognised; it is generally included in university graduate attributes, professional standards and program objectives. Furthermore, reflection is commonly embedded into assessment requirements in higher education subjects, often without necessary scaffolding or clear expectations for students. Despite the rhetoric around the importance of reflection for ongoing learning, there is scant literature on any systematic, developmental approach to teaching reflective learning across higher education programs/courses. Given that professional or academic reflection is not intuitive, and requires specific pedagogic intervention to do well, a program/course-wide approach is essential. This paper draws on current literature to theorise a new, transferable and customisable model for teaching and assessing reflective learning across higher education, which foregrounds and explains the pedagogic field of higher education as a multi-dimensional space. We argue that explicit and strategic pedagogic intervention, supported by dynamic resources, is necessary for successful, broad-scale approaches to reflection in higher education.
Resumo:
To gain insight into melanoma pathogenesis, we characterized an insertional mouse mutant, TG3, that is predisposed to develop multiple melanomas. Physical mapping identified multiple tandem insertions of the transgene into intron 3 of Grm1 (encoding metabotropic glutamate receptor 1) with concomitant deletion of 70 kb of intronic sequence. To assess whether this insertional mutagenesis event results in alteration of transcriptional regulation, we analyzed Grm1 and two flanking genes for aberrant expression in melanomas from TG3 mice. We observed aberrant expression of only Grm1. Although we did not detect its expression in normal mouse melanocytes, Grm1 was ectopically expressed in the melanomas from TG3 mice. To confirm the involvement of Grm1 in melanocytic neoplasia, we created an additional transgenic line with Grm1 expression driven by the dopachrome tautomerase promoter. Similar to the original TG3, the Tg(Grm1)EPv line was susceptible to melanoma. In contrast to human melanoma, these transgenic mice had a generalized hyperproliferation of melanocytes with limited transformation to fully malignant metastasis. We detected expression of GRM1 in a number of human melanoma biopsies and cell lines but not in benign nevi and melanocytes. This study provides compelling evidence for the importance of metabotropic glutamate signaling in melanocytic neoplasia.
Resumo:
Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.
Resumo:
The action potential (ap) of a cardiac cell is made up of a complex balance of ionic currents which flow across the cell membrane in response to electrical excitation of the cell. Biophysically detailed mathematical models of the ap have grown larger in terms of the variables and parameters required to model new findings in subcellular ionic mechanisms. The fitting of parameters to such models has seen a large degree of parameter and module re-use from earlier models. An alternative method for modelling electrically exciteable cardiac tissue is a phenomenological model, which reconstructs tissue level ap wave behaviour without subcellular details. A new parameter estimation technique to fit the morphology of the ap in a four variable phenomenological model is presented. An approximation of a nonlinear ordinary differential equation model is established that corresponds to the given phenomenological model of the cardiac ap. The parameter estimation problem is converted into a minimisation problem for the unknown parameters. A modified hybrid Nelder–Mead simplex search and particle swarm optimization is then used to solve the minimisation problem for the unknown parameters. The successful fitting of data generated from a well known biophysically detailed model is demonstrated. A successful fit to an experimental ap recording that contains both noise and experimental artefacts is also produced. The parameter estimation method’s ability to fit a complex morphology to a model with substantially more parameters than previously used is established.