920 resultados para MITOCHONDRIAL-DNA SEQUENCES
Resumo:
In the beginning of the 20th century, a new canine disease was reported in Brazil under the name ""nambiuvu"", whose etiological agent was called Rangelia vitalii, a distinct piroplasm that was shown to parasitize not only erythrocytes, but also leucocytes and endothelial cells. In this new century, more publications on R. vitalii were reported from Brazil, including an extensive study on its ultrastructural analysis, in addition to clinical, pathological, and epidemiological data on nambiuvu. However, a molecular analysis of R. vitalii has not been performed to date. In the present study, we performed molecular phylogenetic analyses of R. vitalii based on fragments of the genes 18S rRNA and the heat shock protein 70 (hsp70), amplified by PCR performed on blood samples derived from five clinical cases of dogs presumably infected with R. vitalii in southern Brazil. In addition, we examined Giemsa-stained thin blood smears from these same dogs. DNA sequences (604-bp) of the 18S rRNA gene obtained from the five dogs were identical to each other, and by Blast analysis, this sequence shared the highest degree of sequence identity (95%) with Babesia sp. China-BQ1. DNA sequences (1056-bp) of the hsp70 gene obtained from the five dogs were identical to each other, and by Blast analysis, this sequence shared the highest degree of sequence identity (87%) with Babesia bigemina. Phylogenetic analyses inferred from either of the two genes resulted in the newly genotype being placed in the Babesia spp.sensu stricto clade with very high bootstrap support (95-100%) in three analyses (Neighbor-Joining, Maximum parsimony, and Maximum likelihood). Giemsa-stained thin blood smears from the dogs were shown to contain piroplasm organisms within erythrocytes, monocytes and neutrophils (individual forms), and schizont-like forms within neutrophils, in accordance with literature reports of R. vitalii. Based on these results, we conclude that R. vitalii, the etiological agent of ""nambiuvu"" in southern Brazil, is a valid species of piroplasm. Further studies are required to evaluate the validity of the genus Rangelia. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Escherichia coli strains of serotype O51:H40 were studied with regard to the presence of several virulence properties and their genetic diversity and enteropathogenicity in rabbit ileal loops. This serotype encompasses potential enteropathogenic strains mostly classified as being atypical enteropathogenic E. coli (EPEC) strains, which are genetically closer to enterohemorrhagic E. coli than to typical EPEC strains.
Resumo:
Nuclear-mitochondrial incompatibilities may be responsible for the development failure reported in embryos and fetuses produced by interspecies somatic cell nuclear transfer (iSCNT). Herein we performed xenooplasmic transfer (XOT) by introducing 10 to 15% of buffalo ooplasm into bovine zygotes to assess its effect on the persistence of buffalo mitochondrial DNA (mtDNA). Blastocyst rates were not compromised by XOT in comparison to both in vitro fertilized embryos and embryos produced by transfer of bovine ooplasm into bovine zygotes. Moreover, offspring were born after transfer of XOT embryos to recipient cows. Buffalo mtDNA introduced in zygotes was still present at the blastocyst stage (8.3 vs. 9.3%, p = 0.11), indicating unaltered heteroplasmy during early development. Nonetheless, no vestige of buffalo mtDNA was found in offspring, indicating a drift to homoplasmy during later stages of development. In conclusion, we show that the buffalo mtDNA introduced by XOT into a bovine zygote do not compromise embryo development. On the other hand, buffalo mtDNA was not inherited by offspring indicating a possible failure in the process of interspecies mtDNA replication.
Resumo:
In the last few years two factors have helped to significantly advance our understanding of the Myxozoa. First, the phenomenal increase in fin fish aquaculture in the 1990s has lead to the increased importance of these parasites; in rum this has lead to intensified research efforts, which have increased knowledge of the development, diagnosis, and pathogenesis of myxozoans. The hallmark discovery in the 1980s that the life cycle of Myxobolus cerebralis requires development of an actinosporean stage in the Oligochaete. Tubifex tubifex, led to the elucidation of the life cycles of several other myxozoans. Also, the life cycle and taxonomy of the enigmatic PKX myxozoan has been resolved: it is the alternate stage of the unusual myxozoan. Tetracapsula bryosalmonae, from bryozoans. The 18S rDNA gene of many species has been sequenced, and here we add 22 new sequences to the data set. Phylogenetic analyses using all these sequences indicate that: 1) the Myxozoa are closely related to Cnidaria (also supported by morphological data), 2) marine taxa at the genus level branch separately from genera that usually infect freshwater fishes; 3) taxa cluster more by development and tissue location than by spore morphology; 4) the tetracapsulids branched off early in myxozoan evolution, perhaps reflected by their having bryozoan. rather than annelid hosts; 5) the morphology of actinosporeans offers little information for determining their myxosporean counterparts (assuming that they exist), and 6) the marine actinosporeans from Australia appear to form a clade within the platysporinid myxosporeans. Ribosomal DNA sequences have also enabled development of diagnostic tests for myxozoans. PCR and in situ hybridisation tests based on rDNA sequences have been developed for Myxobolus cerebralis. Ceratomyxa shasta. Kudoa spp,, and Tetracapsula bryosalmonae (PKX). Lectin-based and antibody tests have also been developed for certain myxozoans, such as PKX and C. shasta. We also review important diseases caused by myxozoans. which are emerging or re-emerging. Epizootics of whirling disease in wild rainbow trout (Oncorhynchus mykiss) have recently been reported throughout the Rocky Mountain states of the USA. With a dramatic increase in aquaculture of fishes using marine netpens, several marine myxozoans have been recognized or elevated in status as pathological agents. Kudoa thyrsites infections have caused severe post-harvest myoliquefaction in pen-reared Atlantic salmon (Salmo salar), and Ceratomyxa spp., Sphaerospora spp., and Myxidium leei cause disease in pen-reared sea bass (Dicentrarchus labrax) and sea bream species (family Sparidae) in Mediterranean countries.
Resumo:
There have been no reports of DNA sequences of hepatitis B virus (HBV) strains from Australian Aborigines, although the hepatitis B surface antigen (HBsAg) was discovered among them. To investigate the characteristics of DNA sequences of HBV strains from Australian Aborigines, the complete nucleotide sequences of HBV strains were determined and subjected to molecular evolutionary analysis. Serum samples positive for HBsAg were collected from five Australian Aborigines. Phylogenetic analysis of the five complete nucleotide sequences compared with DNA sequences of 54 global HBV isolates from international databases revealed that three of the five were classified into genotype D and were most closely related in terms of evolutionary distance to a strain isolated from a healthy blood donor in Papua New Guinea. Two of the five were classified into a novel variant genotype C, which has not been reported previously, and were closely related to a strain isolated from Polynesians, particularly in the X and Core genes. These two strains of variant genotype C differed from known genotype C strains by 5.9-7.4% over the complete nucleotide sequence and 4.0-5.6 % in the small-S gene, and had residues Arg(122), Thr(127) and Lys(160) characteristic of serotype ayw3, which have not been reported previously in genotype C. In conclusion, this is the first report of the characteristics of complete nucleotide sequences of HBV from Australian Aborigines. These results contribute to the investigation of the worldwide spread of HBV, the relationship between serotype and genotype and the ancient common origin of Australian Aborigines.
Resumo:
We investigated the phylogeography of two closely related Australian frog species from open forest habitats, Limnodynastes tasmaniensis and L. peronii, using mitochondrial ND4 sequence data. Comparison of our results with previous work on Litoria fallax allowed us to test the generality of phylogeographic patterns among non-rainforest anurans along the east coast of Australia. In general, there was no strong evidence for congruence between overall patterns of genetic structure in the three species. However, phylogenetic breaks congruent with the position of the Burdekin Gap were detected at some level in all species. As previously noted for closed forest taxa, this area of dry habitat appears to have been an important influence on the evolution of several open forest taxa. There were broad geographic similarities in the phylogenetic structuring of southern populations of L. peronii and L. tasmaniensis. Contrarily, although the McPherson Range has previously been noted to coincide geographically with a major mtDNA phylogenetic break in Litoria fallax this pattern is not apparent in L. peronii or L. tasmaniensis. It appears that major phylogeographic splits within L. peronii and L. tasmaniensis may predate the Quaternary. We conclude that phylogeographies of open forest frogs are complex and more difficult to predict than for rainforest taxa, mainly due to an absence of palaeomodels for historical distributions of non-rainforest habitats. (C) 2001 The Linnean Society of London.
Resumo:
The 16S rRNA gene (16S rDNA) is currently the most widely used gene for estimating the evolutionary history of prokaryotes, To date, there are more than 30 000 16S rDNA sequences available from the core databases, GenBank, EMBL and DDBJ, This great number may cause a dilemma when composing datasets for phylogenetic analysis, since the choice and number of reference organisms are known to affect the resulting tree topology. A group of sequences appearing monophyletic in one dataset may not be so in another. This can be especially problematic when establishing the relationships of distantly related sequences at the division (phylum) level. In this study, a multiple-outgroup approach to resolving division-level phylogenetic relationships is suggested using 16S rDNA data. The approach is illustrated by two case studies concerning the monophyly of two recently proposed bacterial divisions, OP9 and OP10.
Resumo:
1. Latitudinal variation among species in life-history traits is often suggested to contribute to high tropical species richness. However, traditional methods of analysing such variation rarely control for phylogeny and latitudinal range overlap between species, potentially giving misleading results. 2. Using a method of pairwise independent contrasts which overcomes these problems, I tested for latitudinal variation among bird species in a number of traits which have been linked, theoretically or empirically, with both latitude and species richness. 3. This method indicates strong support for Rapoport's Rule and decreasing clutch size towards the equator in both hemispheres, but only partial support for decreasing body size and ecological generalism towards the equator. 4. Indirect measures of sexual selection (sexual dichromatism and size dimorphism) show no variation with latitude; an apparent increase in dichromatism towards the equator is shown to be an artefact of phylogeny. 5. Many of the associations between life history and latitude were not detected by traditional cross-species analyses, highlighting the importance of incorporating phylogeny and overlap in studies of geographical life-history variation. Establishing associations between life-history traits and latitude does not prove, but is a necessary prerequisite for., a link between these traits and latitudinal diversity gradients.
Resumo:
Comparative phylogeography has proved useful for investigating biological responses to past climate change and is strongest when combined with extrinsic hypotheses derived from the fossil record or geology. However, the rarity of species with sufficient, spatially explicit fossil evidence restricts the application of this method. Here, we develop an alternative approach in which spatial models of predicted species distributions under serial paleoclimates are compared with a molecular phylogeography, in this case for a snail endemic to the rainforests of North Queensland, Australia. We also compare the phylogeography of the snail to those from several endemic vertebrates and use consilience across all of these approaches to enhance biogeographical inference for this rainforest fauna. The snail mtDNA phylogeography is consistent with predictions from paleoclimate modeling in relation to the location and size of climatic refugia through the late Pleistocene-Holocene and broad patterns of extinction and recolonization. There is general agreement between quantitative estimates of population expansion from sequence data (using likelihood and coalescent methods) vs. distributional modeling. The snail phylogeography represents a composite of both common and idiosyncratic patterns seen among vertebrates, reflecting the geographically finer scale of persistence and subdivision in the snail. In general, this multifaceted approach, combining spatially explicit paleoclimatological models and comparative phylogeography, provides a powerful approach to locating historical refugia and understanding species' responses to them.
Resumo:
The phylogenetic relationships amongst 29 species of Carlia and Lygisaurus were estimated using a 726-base-pair segment of the protein-coding mitochondrial ND4 gene. Results do not support the recent resurrection of the genus Lygisaurus. Although most Lygisaurus species formed a single clade, this clade is nested within Carlia and includes Carlia parrhasius. Due to this new molecular evidence, and the paucity of diagnostic morphological characters separating the genera, Lygisaurus de Vis 1884 is re-synonymised with Carlia Gray 1845. Our analysis is also inconsistent with a previous suggestion that Lygisaurus timlowi should be removed to Menetia, a genus that is distantly related relative to outgroups used here. Intraspecific variation in Carlia is, in several instances, greater than interspecific distance. The most strikingly divergent lineages are found within C. rubrigularis, which appears to be paraphyletic, with southern populations more closely related to C. rhomboidalis than to northern populations of C. rubrigularis. The two C. rubrigularis-C. rhomboidalis lineages form part of a major polytomy at an intermediate level of divergence. Lack of resolution at this level, however, does not appear to be due to saturation or loss of phylogenetic signal. Rather, the polytomy probably reflects a period of relatively rapid diversification that occurred sometime during the Miocene.
Resumo:
Adaptation and reproductive isolation, the engines of biological diversity, are still elusive when discussing the genetic bases of speciation. Namely, the number of genes and magnitude of selection acting positively or negatively on genomic traits implicated in speciation is contentious. Here, we describe the first steps of an ongoing research program aimed at understanding the genetic bases of population divergence and reproductive isolation in the lake whitefish (Coregonus clupeaformis). A preliminary linkage map originating from a hybrid cross between dwarf and normal ecotypes is presented, whereby some of the segregating AFLP markers were found to be conserved among natural populations. Maximum-likelihood was used to estimate hybrid indices from non-diagnostic markers at 998 AFLP loci. This allowed identification of the most likely candidate loci that have been under the influence of selection during the natural hybridisation of whitefish originating from different glacial races. As some of these loci could be identified on the linkage map, the possibility that selection of traits in natural populations may eventually be correlated to specific chromosomal regions was demonstrated. The future prospects and potential of these approaches to elucidate the genetic bases of adaptation and reproductive isolation among sympatric ecotypes of lake whitefish is discussed.
Resumo:
Echinococcus remains a significant public health problem worldwide and, in several regions, the aetiological agents of cystic hydatid disease/echinococcosis are extending their range. The taxonomy of Echinococcus has been a controversial issue for decades, but the outcome of recent molecular epidemiological studies has served to reinforce proposals made ten years ago to revise the taxonomy of Echinococcus. A formal nomenclature is essential for effective communication, and provides the stability that underpins epidemiological investigations. It will also serve to recognize the contribution of early taxonomists.
Resumo:
Only a small proportion of the mouse genome is transcribed into mature messenger RNA transcripts. There is an international collaborative effort to identify all full-length mRNA transcripts from the mouse, and to ensure that each is represented in a physical collection of clones. Here we report the manual annotation of 60,770 full-length mouse complementary DNA sequences. These are clustered into 33,409 'transcriptional units', contributing 90.1% of a newly established mouse transcriptome database. Of these transcriptional units, 4,258 are new protein-coding and 11,665 are new non-coding messages, indicating that non-coding RNA is a major component of the transcriptome. 41% of all transcriptional units showed evidence of alternative splicing. In protein-coding transcripts, 79% of splice variations altered the protein product. Whole-transcriptome analyses resulted in the identification of 2,431 sense-antisense pairs. The present work, completely supported by physical clones, provides the most comprehensive survey of a mammalian transcriptome so far, and is a valuable resource for functional genomics.
Resumo:
The availability of variable genetic markers for groupers (Serranidae) has generally been limited to mitochondrial DNA. For studies of population genetic structure, more loci are usually required; particularly useful are those that are nuclear in origin such as microsatellites. Here, we isolated and characterized 9 microsatellite loci from the endemic Hawaiian grouper Epinephelus quernus using a biotin-labeled oligonucleotide-streptavidin-coated magnetic bead approach. Of the 20 repeat-containing fragments isolated, 15 had sufficient flanking region in which to design primers. Among these, 9 produced consistent polymerase chain reaction product, and 6 were highly variable. These 6 loci were all composed of dinucleotide repeats, with the number of alleles ranging from 6 to 18, and heterozygosities from 33.3% to 91.7%. The high levels of variability observed should make these markers useful for population genetic studies of E. quernus, and potentially other epinephelines.
Resumo:
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.