995 resultados para MEDIATED TRANSFORMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of astrocytes as structural and metabolic support for neurons is known since the beginning of the last century. Because of their strategic localization between neurons and capillaries they can monitor and control the level of synaptic activity by providing energetic metabolites to neurons and remove excess of neurotransmitters. During the last two decades number of papers further established that the astrocytic plasma-membrane G-protein coupled receptors (GPCR) can sense external inputs (such as the spillover of neurotransmitters) and transduce them as intracellular calcium elevations and release of chemical transmitters such as glutamate. The chemokine CXCR4 receptor is a GPCR widely expressed on glial cells (especially astrocytes and microglia). Activation of the astrocytic CXCR4 by its natural ligand CXCL12 (or SDF1 alpha) results in a long chain of intracellular and extracellular events (including the release of the pro-inflammatory cytokine TNFalpha and prostanglandins) leading to glutamate release. The emerging role of CXCR4-CXCL12 signalling axis in brain physiology came from the recent observation that glutamate in astrocytes is released via a regulated exocytosis process and occurs with a relatively fast time-scale, in the order of few hundred milliseconds. Taking into account that astrocytes are electrically non-excitable and thus exocytosis rely only on a signalling pathway that involves the release Ca(2+) from the internal stores, these results suggested a close relationship between sites of Ca(2+) release and those of fusion events. Indeed, a recent observation describes structural sub-membrane microdomains where fast ER-dependent calcium elevations occur in spatial and temporal correlation with fusion events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the role of incomplete ex ante contracts for ex post trade. Previous experimental evidence indicates that a contract provides a reference point for entitlements when the terms are negotiated in a competitive market. We show that this finding no longer holds when the terms are determined in a non-competitive way. Our results imply that the presence of a "fundamental transformation" (i.e., the transition from a competitive market to a bilateral relationship) is important for a contract to become a reference point. To the best of our knowledge this behavioral aspect of the fundamental transformation has not been shown before.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualization of the vascular systems of organs or of small animals is important for an assessment of basic physiological conditions, especially in studies that involve genetically manipulated mice. For a detailed morphological analysis of the vascular tree, it is necessary to demonstrate the system in its entirety. In this study, we present a new lipophilic contrast agent, Angiofil, for performing postmortem microangiography by using microcomputed tomography. The new contrast agent was tested in 10 wild-type mice. Imaging of the vascular system revealed vessels down to the caliber of capillaries, and the digital three-dimensional data obtained from the scans allowed for virtual cutting, amplification, and scaling without destroying the sample. By use of computer software, parameters such as vessel length and caliber could be quantified and remapped by color coding onto the surface of the vascular system. The liquid Angiofil is easy to handle and highly radio-opaque. Because of its lipophilic abilities, it is retained intravascularly, hence it facilitates virtual vessel segmentation, and yields an enduring signal which is advantageous during repetitive investigations, or if samples need to be transported from the site of preparation to the place of actual analysis, respectively. These characteristics make Angiofil a promising novel contrast agent; when combined with microcomputed tomography, it has the potential to turn into a powerful method for rapid vascular phenotyping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. Here we used a repetitive imaging approach in hippocampal slice cultures to investigate properties of structural plasticity and their modulation by signaling pathways. We found that basal spine turnover was significantly reduced in Fmr1-KO mice, but markedly enhanced by activity. Additionally, activity-mediated spine stabilization was lost in Fmr1-KO mice. Application of the metabotropic glutamate receptor antagonist α-Methyl-4-carboxyphenylglycine (MCPG) enhanced basal turnover, improved spine stability, but failed to reinstate activity-mediated spine stabilization. In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although contributing to inflammatory responses and to the development of certain autoimmune pathologies, type I interferons (IFNs) are used for the treatment of viral, malignant, and even inflammatory diseases. Interleukin-1 (IL-1) is a strongly pyrogenic cytokine and its importance in the development of several inflammatory diseases is clearly established. While the therapeutic use of IL-1 blocking agents is particularly successful in the treatment of innate-driven inflammatory disorders, IFN treatment has mostly been appreciated in the management of multiple sclerosis. Interestingly, type I IFNs exert multifaceted immunomodulatory effects, including the reduction of IL-1 production, an outcome that could contribute to its efficacy in the treatment of inflammatory diseases. In this review, we summarize the current knowledge on IL-1 and IFN effects in different inflammatory disorders, the influence of IFNs on IL-1 production, and discuss possible therapeutic avenues based on these observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcineurin is a heterodimeric protein phosphatase complex composed of catalytic (CnaA) and regulatory (CnaB) subunits and plays diverse roles in regulating fungal stress responses, morphogenesis, and pathogenesis. Fungal pathogens utilize the calcineurin pathway to survive in the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making calcineurin a promising antifungal drug target. Here, we review novel findings on calcineurin localization and functions in Aspergillus fumigatus hyphal growth and septum formation through regulation of proteins involved in cell wall biosynthesis. Extensive mutational analysis in the functional domains of A. fumigatus CnaA has led to an understanding of the relevance of these domains for the localization and function of CnaA at the hyphal septum. An evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi was found to be responsible for virulence in A. fumigatus. This finding of a filamentous fungal-specific mechanism controlling hyphal growth and virulence represents a potential target for antifungal therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymic negative selection renders the developing T-cell repertoire tolerant to self-major histocompatability complex (MHC)/peptide ligands. The major mechanism of induction of self-tolerance is thought to be thymic clonal deletion, ie, the induction of apoptotic cell death in thymocytes expressing a self-reactive T-cell receptor. Consistent with this hypothesis, in mice deficient in thymic clonal deletion mediated by cells of hematopoietic origin, a twofold to threefold increased generation of mature thymocytes has been observed. Here we describe the analysis of the specificity of T lymphocytes developing in the absence of clonal deletion mediated by hematopoietic cells. In vitro, targets expressing syngeneic MHC were readily lysed by activated CD8(+) T cells from deletion-deficient mice. However, proliferative responses of T cells from these mice on activation with syngeneic antigen presenting cells were rather poor. In vivo, deletion-deficient T cells were incapable of induction of lethal graft-versus-host disease in syngeneic hosts. These data indicate that in the absence of thymic deletion mediated by hematopoietic cells functional T-cell tolerance can be induced by nonhematopoietic cells in the thymus. Moreover, our results emphasize the redundancy in thymic negative selection mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherent cells from murine long-term marrow cultures (LTMC) were examined for presence of mRNA for granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (Il-3). Six hours after medium replacement, GM-CSF mRNA was detected but was no longer detectable 24 h after feeding; Il-3 mRNA was not detected at any time. Neutralizing antibodies against these factors had no effect on hemopoiesis. Exogenous Il-3 increased cell production, notably mature erythroid progenitors, whereas GM-CSF had little long-term effect even at high concentrations. Furthermore, GM-CSF appeared to be specifically removed from the medium, whereas virtually all of the Il-3 could be recovered under identical incubation conditions. These results show that Il-3 is not required for maintaining long-term hemopoiesis in vitro, whereas the precise role of GM-CSF in this system remains unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-chain acyl-coenzyme A synthetase (ACS) gene gives rise to three transcripts containing different first exons preceded by specific regulatory regions A, B, and C. Exon-specific oligonucleotide hybridization indicated that only A-ACS mRNA is expressed in rat liver. Fibrate administration induced liver C-ACS strongly and A-ACS mRNA to a lesser extent. B-ACS mRNA remained undetectable. In primary rat hepatocytes and Fa-32 hepatoma cells C-ACS mRNA increased after treatment with fenofibric acid, alpha-bromopalmitate, tetradecylthioacetic acid, or alpha-linolenic acid. Nuclear run-on experiments indicated that fenofibric acid and alpha-bromopalmitate act at the transcriptional level. Transient transfections showed a 3.4-, 2.3-, and 2.2-fold induction of C-ACS promoter activity after fenofibric acid, alpha-bromopalmitate, and tetradecylthioacetic acid, respectively. Unilateral deletion and site-directed mutagenesis identified a peroxisome proliferator activator receptor (PPAR)-responsive element (PPRE) mediating the responsiveness to fibrates and fatty acids. This ACS PPRE contains three imperfect half sites spaced by 1 and 3 oligonucleotides and binds PPAR.retinoid X receptor heterodimers in gel retardation assays. In conclusion, the regulation of C-ACS mRNA expression by fibrates and fatty acids is mediated by PPAR.retinoid X receptor heterodimers interacting through a PPRE in the C-ACS promoters. PPAR therefore occupies a key position in the transcriptional control of a pivotal enzyme controlling the channeling of fatty acids into various metabolic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Priming of T cells by dendritic cells (DCs) in the intestinal mucosa and associated lymphoid tissues helps maintain mucosal tolerance but also contributes to the development of chronic intestinal inflammation. Chemokines regulate the intestinal immune response and can contribute to pathogenesis of inflammatory bowel diseases. We investigated the role of the chemokine CCL17, which is expressed by conventional DCs in the intestine and is up-regulated during colitis. METHODS: Colitis was induced by administration of dextran sodium sulfate (DSS) to mice or transfer of T cells to lymphopenic mice. Colitis activity was monitored by body weight assessment, histologic scoring, and cytokine profile analysis. The direct effects of CCL17 on DCs and the indirect effects on differentiation of T helper (Th) cells were determined in vitro and ex vivo. RESULTS: Mice that lacked CCL17 (Ccl17(E/E) mice) were protected from induction of severe colitis by DSS or T-cell transfer. Colonic mucosa and mesenteric lymph nodes from Ccl17-deficient mice produced lower levels of proinflammatory cytokines. The population of Foxp3(+) regulatory T cells (Tregs) was expanded in Ccl17(E/E) mice and required for long-term protection from colitis. CCR4 expression by transferred T cells was not required for induction of colitis, but CCR4 expression by the recipients was required. CCL17 promoted Toll-like receptor-induced secretion of interleukin-12 and interleukin-23 by DCs in an autocrine manner, promoted differentiation of Th1 and Th17 cells, and reduced induction of Foxp3(+) Treg cells. CONCLUSIONS: The chemokine CCL17 is required for induction of intestinal inflammation in mice. CCL17 has an autocrine effect on DCs that promotes production of inflammatory cytokines and activation of Th1 and Th17 cells and reduces expansion of Treg cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Donateur : Bourzeix, Alphonse (18..-19..? ; abbé)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosome replication in Caulobacter crescentus is tightly regulated to ensure that initiation occurs at the right time and only once during the cell cycle. The timing of replication initiation is controlled by both CtrA and DnaA. CtrA binds to and silences the origin. Upon the clearance of CtrA from the cell, the DnaA protein accumulates and allows loading of the replisome at the origin. Here, we identify an additional layer of replication initiation control that is mediated by the HdaA protein. In Escherichia coli, the Hda protein inactivates DnaA after replication initiation. We show that the Caulobacter HdaA homologue is necessary to restrict the initiation of DNA replication to only once per cell cycle and that it dynamically colocalizes with the replisome throughout the cell cycle. Moreover, the transcription of hdaA is directly activated by DnaA, providing a robust feedback regulatory mechanism that adjusts the levels of HdaA to inactivate DnaA.