919 resultados para MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1
Resumo:
The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.
Resumo:
Analytic functions have been obtained to represent the potential energy surfaces of C3 and HCN in their ground electronic states. These functions closely reproduce the available data on the energy, geometry, and force constants in all stable conformations, as well as data on the various dissociation products, and ab initio calculations of the energy at other conformations. The form of the resulting surfaces are portrayed in various ways and discussed briefly.
Resumo:
Background: The possibility that a sub domain of a C clade HIV-1 gp120 could act as an effective immunogen was investigated. To do this, the outer domain ( OD) of gp120(CN54) was expressed and characterized in a construct marked by a re-introduced conformational epitope for MAb 2G12. The expressed sequence showed efficient epitope retention on the isolated ODCN54 suggesting authentic folding. To facilitate purification and subsequent immunogenicity ODCN54 was fused to the Fc domain of human IgGl. Mice were immunised with the resulting fusion proteins and also with gp120(CN54)-Fc and gp120 alone. Results: Fusion to Fc was found to stimulate antibody titre and Fc tagged ODCN54 was substantially more immunogenic than non-tagged gp120. Immunogenicity appeared the result of Fc facilitated antigen processing as immunisation with an Fc domain mutant that reduced binding to the FcR lead to a reduction in antibody titre when compared to the parental sequence. The breadth of the antibody response was assessed by serum reaction with five overlapping fragments of gp120(CN54) expressed as GST fusion proteins in bacteria. A predominant anti-inner domain and anti-V3C3 response was observed following immunisation with gp120(CN54)-Fc and an anti-V3C3 response to the ODCN54-Fc fusion. Conclusion: The outer domain of gp120(CN54) is correctly folded following expression as a C terminal fusion protein. Immunogenicity is substantial when targeted to antigen presenting cells but shows V3 dominance in the polyvalent response. The gp120 outer domain has potential as a candidate vaccine component.
Resumo:
Oxidized low-density lipoproteins (LDL) play a central role in atherogenesis and induce expression of the antioxidant stress protein heme oxygenase 1 (HO-1). In the present study we investigated induction of HO-1 and adaptive increases in reduced glutathione (GSH) in human aortic smooth muscle cells (SMC) in response to moderately oxidized LDL (moxLDL, 100 mu g protein/ml, 24 h), a species containing high levels of lipid hydroperoxides. Expression and activity of HO-1 and GSH levels were elevated to a greater extent by moxLDL than highly oxidized LDL but unaffected by native or acetylated LDL. Inhibitors of protein kinase C (PKC) or mitogen-activated protein kinases (MAPK) p38(MAPK) and MEK or c-jun-NH2-terminal kinase (JNK) significantly attenuated induction of HO-1. Phosphorylation of p38(MAPK), extracellular signal-regulated kinase (ERK1/2), or JNK and nuclear translocation of the transcription factor Nrf2 were enhanced following acute exposure of SMC to rnoxLDL (100 mu g proteiri/ml, 1-2 h). Pretreatment of SMC with the antioxidant vitamin C (100 mu M, 24 h) attenuated the induction of HO-1 by moxLDL. Native and oxidized LDL did not alter basal levels of intracellular ATP, mitochondrial dehydrogenase activity, or expression of the lectin-like oxidized LDL receptor (LOX-1) in SMC. These findings demonstrate for the first time that activation of PKC, p38(MAPK), JNK, ERK1/2, and Nrf2 by oxidized LDL in human SMC leads to HO-1 induction, constituting an adaptive response against oxidative injury that can be ameliorated by vitamin C. (C) 2005 Elsevier Inc. All rights reserved.
Resumo:
Previously we described a heterosexual outbreak of HIV-1 subtype B in a town in the north of England (Doncaster) where 11 of 13 infections were shown to be linked by phylogenetic analysis of the env gp120 region. The 11 infections were related to a putative index case, Don1, and further divided into two groups based on the patients' disease status, their viral sequences, and other epidemiological information. Here we describe two further findings. First, we found that viral isolates and gp120 recombinant viruses derived from patients from one group used the CCR5 coreceptor, whereas viruses from the other group could use both the CCR5 and CXCR4 coreceptors. Patients with the X4/R5 dual tropic strains were symptomatic when diagnosed and progressed rapidly, in contrast to the other patient group that has remained asymptomatic, implying a link between the tropism of the strains and disease outcome. Second, we present additional sequence data derived from the index case, demonstrating the presence of sequences from both clades, with an average interclade distance of 9.56%, providing direct evidence of a genetic link between these two groups. This new study shows that Don1 harbored both strains, implying he was either dually infected or that over time intrahost diversification from the R5 to R5/X4 phenotype occurred. These events may account for/have led to the spread of two genetically related strains with different pathogenic properties within the same heterosexual community.
Resumo:
The molecular structures of NbOBr3, NbSCl3, and NbSBr3 have been determined by gas-phase electron diffraction (GED) at nozzle-tip temperatures of 250 degreesC, taking into account the possible presence of NbOCl3 as a contaminant in the NbSCl3 sample and NbOBr3 in the NbSBr3 sample. The experimental data are consistent with trigonal-pyramidal molecules having C-3v symmetry. Infrared spectra of molecules trapped in argon or nitrogen matrices were recorded and exhibit the characteristic fundamental stretching modes for C-3v species. Well resolved isotopic fine structure (Cl-35 and Cl-37) was observed for NbSCl3, and for NbOCl3 which occurred as an impurity in the NbSCl3 spectra. Quantum mechanical calculations of the structures and vibrational frequencies of the four YNbX3 molecules (Y = O, S; X = Cl, Br) were carried out at several levels of theory, most importantly B3LYP DFT with either the Stuttgart RSC ECP or Hay-Wadt (n + 1) ECP VDZ basis set for Nb and the 6-311 G* basis set for the nonmetal atoms. Theoretical values for the bond lengths are 0.01-0.04 Angstrom longer than the experimental ones of type r(a), in accord with general experience, but the bond angles with theoretical minus experimental differences of only 1.0-1.5degrees are notably accurate. Symmetrized force fields were also calculated. The experimental bond lengths (r(g)/Angstrom) and angles (angle(alpha)/deg) with estimated 2sigma uncertainties from GED are as follows. NbOBr3: r(Nb=O) = 1.694(7), r(Nb-Br) = 2.429(2), angle(O=Nb-Br) = 107.3(5), angle(Br-Nb-Br) = 111.5(5). NbSBr3: r(Nb=S) = 2.134(10), r(Nb-Br) = 2.408(4), angle(S=Nb-Br) = 106.6(7), angle(Br-Nb-Br) = 112.2(6). NbSCl3: Nb=S) = 2.120(10), r(Nb-Cl) = 2.271(6), angle(S=Nb-Cl) = 107.8(12), angle(Cl-Nb-Cl) = 111.1(11).
Resumo:
Reaction of Cu(1,2-phenylenediamine)(2)(ClO4)(2) with neat RR'=O (R = methyl and/or ethyl) (lives Cu(2,2-dialkyl-2H-benzimidazole)ClO4. demetallation of which by the action of aqueous ammonia yields Pure 2,2-dialkyl-2H-benzimidazoles. These are characterised by NMR. hi the X-ray crystal Structure, Ag(2,2-methyl-2H-benzimi-dazolc)NO3 is Found to be a spiral 1D coordination polymer where the 2H-benzimidazole acts as an N,N bridge between two Ag(I) centus. Although 2H-benzimidazoles are very unstable in the free state, they are quite stable in their Cu(I)(1) and Ag(I) complexes. The 1,2-tautomerisation in imidazole and benzimidazole have been Studied by means of transition state calculations at B3LYP/6-3 11 +G(2d,p)* level.
Resumo:
The phase diagram of a series of poly(1,2-octylene oxide)-poly(ethylene oxide) (POO-PEO) diblock copolymers is determined by small-angle X-ray scattering. The Flory-Huggins interaction parameter was measured by small-angle neutron scattering. The phase diagram is highly asymmetric due to large conformational asymmetry that results from the hexyl side chains in the POO block. Non-lamellar phases (hexagonal and gyroid) are observed near f(PEO) = 0.5, and the lamellar phase is observed for f(PEO) >= 0.5.
Resumo:
The present work reports the chemistry of a few oxidovanadium(IV) and (V) complexes of the ONS chelating ligand S-benzyl-beta-N-(2-hydroxyphenylethylidine) dithiocarbazate (H2L). Major objective of this work is to arrive at some general conclusions about the influence of binding environment generated by the replacement of an O-donor center by a S-donor point in a ligand (of a similar arrangement of the other O- and N-donor points) on the redox behavior and on the structural features of comparable [VO(OEt)(ONS)] and [VO(OEt)(ONO)] complexes. Synthesis, characterization by various physicochemical techniques (UV-Vis, IR, EPR and elemental analysis), exploration of electrochemical activity of the oxidovanadium(V) complex [(VO)-O-V(OEt) L] (1), the mixed ligand complex [(VO)-O-V(N-O)L] (3) (where N-O is the mono anion of 8-hydroxyquinoline) and a binuclear complex [(VO)-O-V(OEt)L](2)(mu-4,4'-bipy) (2) are reported. Similar studies on of mixed ligand oxidovanadium(IV) complexes of the formula [(VO)-O-V(N-N)L] (4,5) (where N-N = 2,2'-bipy and o-phen) are also presented here. The [(VO)-O-V(OEt)L] complex is pentacoordinated and distorted square pyramidal, while the [V-IV(N-N)L] complexes are hexacoordinated and octahedral. Structural features of the complex 1 were compared with the corresponding aspects of the previously reported analogous complex [(VO)-O-V(OEt)(ONO)] (1').
Resumo:
Nuclear mnagnetic resonance (NMR) spectroscopy involves the excitation of nuclei by electromagnetic radiation in the radio-frequency range of the electromagnetic spectrum. For a nucleus to absorb energy from radiowaves in this way, it must hve the quantum mechanical property of spin. A spinning nucleus, such as that of the hydrogen atom, will dopt one f only two possible states when placed in a magnetic field. (In NMR, the hydrogen nucleus is often referred to as a proton, and is given the abbreviation 1H.) Az the strength of the magnetic field is increased, there is a proportional increase in the energy 'gap' between these two states. We can predic the resonant frequency at which any spinning nucleus will absorb energy from radio-frequency radiation as it jumps from the lower energy state to the upper state.