949 resultados para MALARIA PARASITES
Resumo:
A common approach to malaria prevention is to follow the "A, B, C, D" rule: Awareness of risk, Bite avoidance, Compliance with chemoprophylaxis, and prompt Diagnosis in case of fever. The risk of acquiring malaria depends on the length and intensity of exposure; the risk of developing severe disease is primarily determined by the health status of the traveler. These parameters need to be assessed before recommending chemoprophylaxis and/or stand-by emergency treatment. This review discusses the different strategies and drug options available for the prevention of malaria during and post travel.
Resumo:
The effects of pyrimethamine-sulphadoxine (PS), chloroquine plus chlorpheniramine, a H1 receptor antagonist that reverses chloroquine resistance in Plasmodium falciparum in vitro and in vivo (CQCP), and amodiaquine plus pyrimethamine-sulphadoxine (AQPS) on gametocyte production were evaluated in 157 children with acute, symptomatic, uncomplicated falciparum malaria who were treated with these drugs. PS was significantly less effective than CQCP or AQPS at clearing asexual parasitaemia or other symptoms of malaria. Gametocyte carriage on days 3, 7, and 14 were significantly higher in those treated with PS. The ratio of the density (per µl blood) of peripheral young gametocyte (PYG), that is, < stage III to peripheral mature gametocyte (PMG), that is, stage IV and V, an index of continuing generation of gametocytes, rose to 1 by day 7 of treatment in those treated with PS, but remained consistently below 1 in the other treatment groups. PYG-PMG density ratio increased significantly from day 0-14 in those treated with PS and CQCP (chi2 = 76, P = 0.000001 and chi2 = 42.2, P = 0.00001, respectively) but decreased significantly in those treated with AQPS (chi2 = 53.2, P = 0.000001). Both PS-sensitive and -resistant infections generated PYG (18 of 29 vs 13 of 20, chi2 = 0.04, P = 0.93) but PYG was present only in those with resistant response to CQCP. Combination of PS with amodiaquine (AQ), that is, (AQPS) resulted in less production of PYG, but in this setting, PYG was not indicative of response to AQPS. These data indicate that PS enhanced production or release of young gametocytes when used alone, but generated less young gametocytes when used in combination with AQ. PYG may be used as an indicator of response to CQCP but not PS or PS-based combination drugs.
Resumo:
In the present study, we have explored ways of inducing a CTL response to a previously defined H-2Kd MHC class I restricted epitope in the circumsporozoite (CS) protein of Plasmodium berghei, and studied in detail the fine specificity of the response. We found that the s.c. injection of a variety of synthetic peptides emulsified in Freund's adjuvant efficiently induced a specific CTL response in (BALB/c x C57BL/6)F1 (H-2d x H-2b) mice. In contrast, BALB/c mice responded only marginally, consistent with the possible requirement for a concomitant Th response that would be provided by the C57BL/6 strain. Similar to our previous observations in analyzing CTL clones from sporozoite-immunized mice, the CTL response induced by peptide immunization was in part cross-reactive with an epitope from the Plasmodium yoelii species. The minimal P. berghei CS epitope, the octapeptide PbCS 253-260, was studied in detail by the analysis of a series of variant CS peptides containing single Ala substitutions. The relative antigenic activity for each variant peptide was calculated for 28 different CTL clones. Overall, the response to this P. berghei CTL epitope appeared to be extremely diverse in terms of fine specificity. This was evident among the CTL derived from sporozoite-immunized mice, as well as among those from peptide-immunized animals. The heterogeneity found at the functional level correlates with the highly diverse TCR repertoire that we have found for the same series of CTL clones in a study that is reported separately. The relative competitor activity for each Ala-substituted peptide was also determined in a quantitative functional competition assay. For the residues (Tyr253 and Ile260) within the 8-mer CS peptide, substitution with Ala reduced competitor activity by at least 40-fold, and for two others the reduction was 5- to 10-fold. When the relative antigenic activity for each CTL/peptide combination was normalized to the relative competitor activity of the peptide, a striking pattern emerged. The two residues that most affected competitor activity showed no additional effect on recognition beyond that observed for competition. In marked contrast, Ala substitutions at the other five positions tested varied widely, depending on the CTL/peptide combination. This pattern not only supports a model whereby the Tyr253 and Ile260 residues anchor the peptide to the Kd molecule, but also implies that they are virtually inaccessible to the TCR.
Resumo:
BACKGROUND:Maternally transmitted symbionts have evolved a variety of ways to promote their spread through host populations. One strategy is to hamper the reproduction of uninfected females by a mechanism called cytoplasmic incompatibility (CI). CI occurs in crosses between infected males and uninfected females and leads to partial to near-complete infertility. CI-infections are under positive frequency-dependent selection and require genetic drift to overcome the range of low frequencies where they are counter-selected. Given the importance of drift, population sub-division would be expected to facilitate the spread of CI. Nevertheless, a previous model concluded that variance in infection between competing groups of breeding individuals impedes the spread of CI.RESULTS:In this paper we derive a model on the spread of CI-infections in populations composed of demes linked by restricted migration. Our model shows that population sub-division facilitates the invasion of CI. While host philopatry (low migration) favours the spread of infection, deme size has a non-monotonous effect, with CI-invasion being most likely at intermediate deme size. Individual-based simulations confirm these predictions and show that high levels of local drift speed up invasion but prevent high levels of prevalence across the entire population. Additional simulations with sex-specific migration rates further show that low migration rates of both sexes are required to facilitate the spread of CI.CONCLUSION:Our analyses show that population structure facilitates the invasion of CI-infections. Since some level of sub-division is likely to occur in most natural populations, our results help to explain the high incidence of CI-infections across species of arthropods. Furthermore, our work has important implications for the use of CI-systems in order to genetically modify natural populations of disease vectors.
Resumo:
Longitudinal entomological surveys were performed in Vila Candelária and adjacent rural locality of Bate Estaca concomitantly with a clinical epidemiologic malaria survey. Vila Candelária is a riverside periurban neighborhood of Porto Velho, capital of the state of Rondônia in the Brazilian Amazon. High anopheline densities were found accompanying the peak of rainfall, as reported in rural areas of the region. Moreover, several minor peaks of anophelines were recorded between the end of the dry season and the beginning of the next rainy season. These secondary peaks were related to permanent anopheline breeding sites resulting from human activities. Malaria transmission is, therefore, observed all over the year. In Vila Candelária, the risk of malaria infection both indoors and outdoors was calculated as being 2 and 10/infecting bites per year per inhabitant respectively. Urban malaria in riverside areas was associated with two factors: (1) high prevalence of asymptomatic carriers in a stable human population and (2) high anopheline densities related to human environmental changes. This association is probably found in other Amazonian urban and suburban communities. The implementation of control measures should include environmental sanitation and better characterization of the role of asymptomatic carriers in malaria transmission.
Resumo:
In Western Amazon areas with perennial malaria transmission, long term residents frequently develop partial immunity to malarial infection caused either by Plasmodium falciparum or P. vivax, resulting in a considerable number of non-symptomatically infected individuals. For yet unknown reasons, these individuals sporadically develop symptomatic malaria. In order to identify if determined parasite genotypes, defined by a combination of eleven microsatellite markers, were associated to different outcomes - symptomatic or asymptomatic malaria - we analyzed infecting P. falciparum parasites in a suburban riverine population. Despite of detecting a high degree of diversity in the analyzed samples, several microsatellite marker alleles appeared accumulated in parasites from non-symptomatic infections. This result may be interpreted that a number of microsatellites, which are not directly related to antigenic features, could be associated to the outcome of malarial infection. The result may also point to a low frequency of recombinatorial events which otherwise would dissociate genes under strong immune pressure from the relatively neutral microsatellite loci.
Resumo:
Malaria control has been directed towards regional actions where more detailed knowledge of local determinants of transmission is of primary importance. This is a short report on range distribution and biting indices for Anopheles darlingi and An. albitarsis during the dry and rainy season that follows river level variation in a savanna/alluvial forest malaria system area in the Northern Amazon Basin. Distribution range and adult biting indices were at their highest during the rainy season for both An. darlingi and An. albitarsis. During the rainy season the neighboring alluvial forest was extensively flooded. This coincided with highest rates in malaria transmission with case clustering near the river. As the river receded, anopheline distribution range and density decreased. This decrease in distribution and density corresponded to a malaria decrease in the near area. An exponential regression function was derived to permit estimations of An. darlingi distribution over specified distances. Anopheline spatio-temporal variations lead to uneven malaria case distribution and are of important implications for control strategies.
Resumo:
A longitudinal epidemiological and entomological study was carried out in Ocamo, Upper Orinoco River, between January 1994 and February 1995 to understand the dynamics of malaria transmission in this area. Malaria transmission occurs throughout the year with a peak in June at the beginning of the rainy season. The Annual Parasite Index was 1,279 per 1,000 populations at risk. Plasmodium falciparum infections accounted for 64% of all infections, P. vivax for 28%, and P. malariae for 4%. Mixed P. falciparum/P. vivax infections were diagnosed in 15 people representing 4% of total cases. Children under 10 years accounted for 58% of the cases; the risk for malaria in this age group was 77% higher than for those in the greater than 50 years age group. Anopheles darlingi was the predominant anopheline species landing on humans indoors with a biting peak between midnight and dawn. A significant positive correlation was found between malaria monthly incidence and mean number of An. darlingi caught. There was not a significant relationship between mean number of An. darlingi and rainfall or between incidence and rainfall. A total of 7295 anophelines were assayed by ELISA for detection of Plasmodium circumsporozoite (CS) protein. Only An. darlingi (55) was positive for CS proteins of P. falciparum (0.42%), P. malariae (0.25%), and P. vivax-247 (0.1%). The overall estimated entomological inoculation rate was 129 positive bites/person/year. The present study was the first longitudinal entomological and epidemiological study conducted in this area and set up the basic ground for subsequent intervention with insecticide-treated nets.
Resumo:
The population genetic structure of Anopheles darlingi, the major human malaria vector in the Neotropics, was examined using seven microsatellite loci from nine localities in central and western Amazonian Brazil. High levels of genetic variability were detected (5-25 alleles per locus; H E = 0.519-0.949). There was deviation from Hardy-Weinberg Equilibrium for 59.79% of the tests due to heterozygote deficits, while the analysis of linkage disequilibrium was significant for only two of 189 (1.05%) tests, most likely caused by null alleles. Genetic differentiation (F ST = 0.001-0.095; Nm = 4.7-363.8) indicates that gene flow is extensive among locations < 152 km apart (with two exceptions) and reduced, but not absent, at a larger geographic scale. Genetic and geographic distances were significantly correlated (R² = 0.893, P < 0.0002), supporting the isolation by distance (IBD) model. The overall estimate of Ne was 202.4 individuals under the linkage disequilibrium model, and 8 under the heterozygote excess model. Analysis of molecular variance showed that nearly all variation (~ 94%) was within sample locations. The UPGMA phenogram clustered the samples geographically, with one branch including 5/6 of the state of Amazonas localities and the other branch the Acre, Rondônia, and remaining Amazonas localities. Taken together, these data suggest little genetic structure for An. darlingi from central and western Amazonian Brazil. These findings also imply that the IBD model explains nearly all of the differentiation detected. In practical terms, populations of An. darlingi at distances < 152 km should respond similarly to vector control measures, because of high gene flow.
Resumo:
We analyzed prospectively 326 laboratory-confirmed, uncomplicated malarial infections (46.3% due to Plasmodium vivax, 35.3% due to P. falciparum, and 18.4% mixed-species infections) diagnosed in 162 rural Amazonians aged 5-73 years. Thirteen symptoms (fever, chills, sweating, headache, myalgia, arthralgia, abdominal pain, nausea, vomiting, dizziness, cough, dyspnea, and diarrhea) were scored using a structured questionnaire. Headache (59.8%), fever (57.1%), and myalgia (48.4%) were the most frequent symptoms. Ninety-six (29.4%) episodes, all of them diagnosed during cross-sectional surveys of the whole study population (96.9% by molecular technique only), were asymptomatic. Of 93 symptom-less infections left untreated, only 10 became symptomatic over the next two months following diagnosis. Fever was perceived as " intense " in 52.6% of 230 symptomatic malaria episodes, with no fever reported in 19.1% episodes although other symptoms were present. We found significant differences in the prevalence and perceived intensity of fever and other clinical symptoms in relation to parasite load at the time of diagnosis and patient's age, cumulative exposure to malaria, recent malaria morbidity, and species of malaria parasite. These factors are all likely to affect the effectiveness of malaria control strategies based on active or passive detection of febrile subjects in semi-immune populations.
Resumo:
Understanding the different background landscapes in which malaria transmission occurs is fundamental to understanding malaria epidemiology and to designing effective local malaria control programs. Geology, geomorphology, vegetation, climate, land use, and anopheline distribution were used as a basis for an ecological classification of the state of Roraima, Brazil, in the northern Amazon Basin, focused on the natural history of malaria and transmission. We used unsupervised maximum likelihood classification, principal components analysis, and weighted overlay with equal contribution analyses to fine-scale thematic maps that resulted in clustered regions. We used ecological niche modeling techniques to develop a fine-scale picture of malaria vector distributions in the state. Eight ecoregions were identified and malaria-related aspects are discussed based on this classification, including 5 types of dense tropical rain forest and 3 types of savannah. Ecoregions formed by dense tropical rain forest were named as montane (ecoregion I), submontane (II), plateau (III), lowland (IV), and alluvial (V). Ecoregions formed by savannah were divided into steppe (VI, campos de Roraima), savannah (VII, cerrado), and wetland (VIII, campinarana). Such ecoregional mappings are important tools in integrated malaria control programs that aim to identify specific characteristics of malaria transmission, classify transmission risk, and define priority areas and appropriate interventions. For some areas, extension of these approaches to still-finer resolutions will provide an improved picture of malaria transmission patterns.
Resumo:
Antibody responses directed against the Plasmodium falciparum antigens, total extract, anti-merozoite surface protein-3 (MSP3b) and glutamate-rich protein (Glurp-R0) were studied in 42 children exposed to both Schistosoma haematobium and P. falciparum infections. The association between levels of the anti-malaria IgG subclasses and IgM with host age, sex, schistosome infection intensity and schistosome specific antibodies was studied before chemotherapeutic treatment of schistosome infections. This showed a significant negative association between schistosome infection intensity and levels of IgG1, IgG3, and IgG4 directed against malaria total extract antigen, and a positive association between levels of anti-schistosome soluble egg antigen IgG2, IgG3, and IgG4 and levels of the same subclasses directed against malaria total extract antigens. The effect of treating schistosome infections with praziquantel on malaria specific responses was also studied. This treatment resulted in increases in significant IgG4 levels against MSP3b and IgM against Glurp R0. Treatment also resulted in a significant decrease in IgG4 levels against Glurp R0. Host age, sex or pre-treatment infection intensity was not associated with the magnitude of change in the two IgG4 responses while males showed a significantly higher increase in levels of IgM. The results suggest cross reactivity between schistosome and malaria antigens in this population.
Resumo:
Resistance in Plasmodium falciparum to amodiaquine (AQ) can be reversed in vitro with with antihistaminic and tricyclic antidepressant compounds, but its significance in vivo is unclear. The present report presents the enhancement of the antimalarial efficacy of AQ by chlorpheniramine, an H1 receptor antagonist that reverses chloroquine (CQ) resistance in vitro and enhances its efficacy in vivo, in five children who failed CQ and/or AQ treatment, and who were subsequently retreated and cured with a combination of AQ plus CP, despite the fact that parasites infecting the children harboured mutant pfcrtT76 and pfmdr1Y86 alleles associated with AQ resistance. This suggests a potential clinical appliation of the reversal phenomenon.
Resumo:
Anopheles darlingi is the most important Brazilian malaria vector, with a widespread distribution in the Amazon forest. Effective strategies for vector control could be better developed through knowledge of its genetic structure and gene flow among populations, to assess the vector diversity and competence in transmitting Plasmodium. The aim of this study was to assess the genetic diversity of An. darlingi collected at four locations in Porto Velho, by sequencing a fragment of the ND4 mitochondrial gene. From 218 individual mosquitoes, we obtained 20 different haplotypes with a diversity index of 0.756, equivalent to that found in other neotropical anophelines. The analysis did not demonstrate significant population structure. However, haplotype diversity within some populations seems to be over-represented, suggesting the presence of sub-populations, but the presence of highly represented haplotypes complicates this analysis. There was no clear correlation among genetic and geographical distance and there were differences in relation to seasonality, which is important for malarial epidemiology.