980 resultados para Método de Monte Carlo via cadeias de Markov
Resumo:
L’un des problèmes importants en apprentissage automatique est de déterminer la complexité du modèle à apprendre. Une trop grande complexité mène au surapprentissage, ce qui correspond à trouver des structures qui n’existent pas réellement dans les données, tandis qu’une trop faible complexité mène au sous-apprentissage, c’est-à-dire que l’expressivité du modèle est insuffisante pour capturer l’ensemble des structures présentes dans les données. Pour certains modèles probabilistes, la complexité du modèle se traduit par l’introduction d’une ou plusieurs variables cachées dont le rôle est d’expliquer le processus génératif des données. Il existe diverses approches permettant d’identifier le nombre approprié de variables cachées d’un modèle. Cette thèse s’intéresse aux méthodes Bayésiennes nonparamétriques permettant de déterminer le nombre de variables cachées à utiliser ainsi que leur dimensionnalité. La popularisation des statistiques Bayésiennes nonparamétriques au sein de la communauté de l’apprentissage automatique est assez récente. Leur principal attrait vient du fait qu’elles offrent des modèles hautement flexibles et dont la complexité s’ajuste proportionnellement à la quantité de données disponibles. Au cours des dernières années, la recherche sur les méthodes d’apprentissage Bayésiennes nonparamétriques a porté sur trois aspects principaux : la construction de nouveaux modèles, le développement d’algorithmes d’inférence et les applications. Cette thèse présente nos contributions à ces trois sujets de recherches dans le contexte d’apprentissage de modèles à variables cachées. Dans un premier temps, nous introduisons le Pitman-Yor process mixture of Gaussians, un modèle permettant l’apprentissage de mélanges infinis de Gaussiennes. Nous présentons aussi un algorithme d’inférence permettant de découvrir les composantes cachées du modèle que nous évaluons sur deux applications concrètes de robotique. Nos résultats démontrent que l’approche proposée surpasse en performance et en flexibilité les approches classiques d’apprentissage. Dans un deuxième temps, nous proposons l’extended cascading Indian buffet process, un modèle servant de distribution de probabilité a priori sur l’espace des graphes dirigés acycliques. Dans le contexte de réseaux Bayésien, ce prior permet d’identifier à la fois la présence de variables cachées et la structure du réseau parmi celles-ci. Un algorithme d’inférence Monte Carlo par chaîne de Markov est utilisé pour l’évaluation sur des problèmes d’identification de structures et d’estimation de densités. Dans un dernier temps, nous proposons le Indian chefs process, un modèle plus général que l’extended cascading Indian buffet process servant à l’apprentissage de graphes et d’ordres. L’avantage du nouveau modèle est qu’il admet les connections entres les variables observables et qu’il prend en compte l’ordre des variables. Nous présentons un algorithme d’inférence Monte Carlo par chaîne de Markov avec saut réversible permettant l’apprentissage conjoint de graphes et d’ordres. L’évaluation est faite sur des problèmes d’estimations de densité et de test d’indépendance. Ce modèle est le premier modèle Bayésien nonparamétrique permettant d’apprendre des réseaux Bayésiens disposant d’une structure complètement arbitraire.
Resumo:
El reactor multipropósito RA-10 que se construirá en Ezeiza tiene como objetivo principal aumentar la producción de radioisótopos destinados al diagnóstico de enfermedades; adicionalmente el proyecto RA-10 permitirá ofrecer al sistema científico-tecnológico oportunidades de investigación, desarrollo y producción. Entre ellas se contará con una facilidad de dopaje de silicio a través de transmutación neutrónica para producir material semiconductor. La principal ventaja de esta técnica de fabricación es que se obtiene el semiconductor más homogéneamente dopado del mercado. Esto se logra irradiando a la pieza con un flujo neutrónico axialmente uniforme. La uniformidad axial se obtiene diseñando un aplanador de flujo que consiste en un conjunto de anillos de acero de diferentes espesores para lograr aplanar el perfil de flujo neutrónico que irradia al silicio. El objetivo de este trabajo es diseñar e implementar un algoritmo que permita calcular los espesores óptimos de acero de forma tal de modificar el perfil de flujo neutrónico que se genera en el núcleo para uniformizarlo lo más posible. Se proponen y evalúan mejoras para incrementar el valor del flujo neutrónico al cual se uniformiza. Posteriormente se evalúan los tiempos necesarios para obtener diferentes resistividades objetivo y se realizan cálculos de activación neutrónica para determinar los tiempos de decaimiento necesarios para cumplir los límites de actividad requeridos. Se realizan además cálculos de calentamiento para determinar la potencia que se debe disipar para refrigerar la facilidad.
Resumo:
The recently reported Monte Carlo Random Path Sampling method (RPS) is here improved and its application is expanded to the study of the 2D and 3D Ising and discrete Heisenberg models. The methodology was implemented to allow use in both CPU-based high-performance computing infrastructures (C/MPI) and GPU-based (CUDA) parallel computation, with significant computational performance gains. Convergence is discussed, both in terms of free energy and magnetization dependence on field/temperature. From the calculated magnetization-energy joint density of states, fast calculations of field and temperature dependent thermodynamic properties are performed, including the effects of anisotropy on coercivity, and the magnetocaloric effect. The emergence of first-order magneto-volume transitions in the compressible Ising model is interpreted using the Landau theory of phase transitions. Using metallic Gadolinium as a real-world example, the possibility of using RPS as a tool for computational magnetic materials design is discussed. Experimental magnetic and structural properties of a Gadolinium single crystal are compared to RPS-based calculations using microscopic parameters obtained from Density Functional Theory.
Resumo:
O prognóstico da perda dentária é um dos principais problemas na prática clínica de medicina dentária. Um dos principais fatores prognósticos é a quantidade de suporte ósseo do dente, definido pela área da superfície radicular dentária intraóssea. A estimação desta grandeza tem sido realizada por diferentes metodologias de investigação com resultados heterogéneos. Neste trabalho utilizamos o método da planimetria com microtomografia para calcular a área da superfície radicular (ASR) de uma amostra de cinco dentes segundos pré-molares inferiores obtida da população portuguesa, com o objetivo final de criar um modelo estatístico para estimar a área de superfície radicular intraóssea a partir de indicadores clínicos da perda óssea. Por fim propomos um método para aplicar os resultados na prática. Os dados referentes à área da superfície radicular, comprimento total do dente (CT) e dimensão mésio-distal máxima da coroa (MDeq) serviram para estabelecer as relações estatísticas entre variáveis e definir uma distribuição normal multivariada. Por fim foi criada uma amostra de 37 observações simuladas a partir da distribuição normal multivariada definida e estatisticamente idênticas aos dados da amostra de cinco dentes. Foram ajustados cinco modelos lineares generalizados aos dados simulados. O modelo estatístico foi selecionado segundo os critérios de ajustamento, preditibilidade, potência estatística, acurácia dos parâmetros e da perda de informação, e validado pela análise gráfica de resíduos. Apoiados nos resultados propomos um método em três fases para estimação área de superfície radicular perdida/remanescente. Na primeira fase usamos o modelo estatístico para estimar a área de superfície radicular, na segunda estimamos a proporção (decis) de raiz intraóssea usando uma régua de Schei adaptada e na terceira multiplicamos o valor obtido na primeira fase por um coeficiente que representa a proporção de raiz perdida (ASRp) ou da raiz remanescente (ASRr) para o decil estimado na segunda fase. O ponto forte deste estudo foi a aplicação de metodologia estatística validada para operacionalizar dados clínicos na estimação de suporte ósseo perdido. Como pontos fracos consideramos a aplicação destes resultados apenas aos segundos pré-molares mandibulares e a falta de validação clínica.
Resumo:
A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.
Resumo:
The main objective of this study is to apply recently developed methods of physical-statistic to time series analysis, particularly in electrical induction s profiles of oil wells data, to study the petrophysical similarity of those wells in a spatial distribution. For this, we used the DFA method in order to know if we can or not use this technique to characterize spatially the fields. After obtain the DFA values for all wells, we applied clustering analysis. To do these tests we used the non-hierarchical method called K-means. Usually based on the Euclidean distance, the K-means consists in dividing the elements of a data matrix N in k groups, so that the similarities among elements belonging to different groups are the smallest possible. In order to test if a dataset generated by the K-means method or randomly generated datasets form spatial patterns, we created the parameter Ω (index of neighborhood). High values of Ω reveals more aggregated data and low values of Ω show scattered data or data without spatial correlation. Thus we concluded that data from the DFA of 54 wells are grouped and can be used to characterize spatial fields. Applying contour level technique we confirm the results obtained by the K-means, confirming that DFA is effective to perform spatial analysis
Resumo:
In recent years, the DFA introduced by Peng, was established as an important tool capable of detecting long-range autocorrelation in time series with non-stationary. This technique has been successfully applied to various areas such as: Econophysics, Biophysics, Medicine, Physics and Climatology. In this study, we used the DFA technique to obtain the Hurst exponent (H) of the profile of electric density profile (RHOB) of 53 wells resulting from the Field School of Namorados. In this work we want to know if we can or not use H to spatially characterize the spatial data field. Two cases arise: In the first a set of H reflects the local geology, with wells that are geographically closer showing similar H, and then one can use H in geostatistical procedures. In the second case each well has its proper H and the information of the well are uncorrelated, the profiles show only random fluctuations in H that do not show any spatial structure. Cluster analysis is a method widely used in carrying out statistical analysis. In this work we use the non-hierarchy method of k-means. In order to verify whether a set of data generated by the k-means method shows spatial patterns, we create the parameter Ω (index of neighborhood). High Ω shows more aggregated data, low Ω indicates dispersed or data without spatial correlation. With help of this index and the method of Monte Carlo. Using Ω index we verify that random cluster data shows a distribution of Ω that is lower than actual cluster Ω. Thus we conclude that the data of H obtained in 53 wells are grouped and can be used to characterize space patterns. The analysis of curves level confirmed the results of the k-means
Resumo:
O cultivo de eucalipto para produção de lenha está sujeito a um conjunto de incertezas relacionadas às dificuldades de previsibilidade de eventos futuros que impactam na rentabilidade dos projetos. Neste contexto, a análise de simulação pode ser adotada objetivando conhecer o risco que tais oscilações nas variáveis de entrada têm sobre o retorno de um investimento. Assim, o objetivo deste trabalho foi avaliar o risco do retorno econômico de um sistema de produção modal de eucalipto para lenha. A avaliação foi realizada na região de Itapeva/SP. Foram utilizadas técnicas de entrevistas e painel com especialistas, representando a prática adotada por grandes produtores. Os indicadores de viabilidade econômica considerados foram o Valor Anual Equivalente (VAE), a Taxa Interna de Retorno (TIR) e o Custo Médio de Produção (CMPr). O risco foi avaliado considerando o emprego do Método de Monte Carlo, com o uso do software @RISK, considerando dois regimes de manejo e simulação do preço da madeira (já entregue ao cliente), da produtividade esperada, e dos rendimentos das operações de coveamento (implantação), corte e extração (colheita). Os resultados indicaram que o regime de manejo com duas rotações proporciona menor risco para a atividade e que o preço da madeira e a produção esperada são as variáveis de risco que mais impactam o resultado econômico.
Resumo:
Analyses of high-density single-nucleotide polymorphism (SNP) data, such as genetic mapping and linkage disequilibrium (LD) studies, require phase-known haplotypes to allow for the correlation between tightly linked loci. However, current SNP genotyping technology cannot determine phase, which must be inferred statistically. In this paper, we present a new Bayesian Markov chain Monte Carlo (MCMC) algorithm for population haplotype frequency estimation, particulary in the context of LD assessment. The novel feature of the method is the incorporation of a log-linear prior model for population haplotype frequencies. We present simulations to suggest that 1) the log-linear prior model is more appropriate than the standard coalescent process in the presence of recombination (>0.02cM between adjacent loci), and 2) there is substantial inflation in measures of LD obtained by a "two-stage" approach to the analysis by treating the "best" haplotype configuration as correct, without regard to uncertainty in the recombination process. Genet Epidemiol 25:106-114, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
Nesta dissertação realizou-se um experimento de Monte Carlo para re- velar algumas características das distribuições em amostras finitas dos estimadores Backfitting (B) e de Integração Marginal(MI) para uma regressão aditiva bivariada. Está-se particularmente interessado em fornecer alguma evidência de como os diferentes métodos de seleção da janela hn, tais co- mo os métodos plug-in, impactam as propriedades em pequenas amostras dos estimadores. Está-se interessado, também, em fornecer evidência do comportamento de diferentes estimadores de hn relativamente a seqüência ótima de hn que minimiza uma função perda escolhida. O impacto de ignorar a dependência entre os regressores na estimação da janela é tam- bém investigado. Esta é uma prática comum e deve ter impacto sobre o desempenho dos estimadores. Além disso, não há nenhuma rotina atual- mente disponível nos pacotes estatísticos/econométricos para a estimação de regressões aditivas via os métodos de Backfitting e Integração Marginal. É um dos objetivos a criação de rotinas em Gauss para a implementação prática destes estimadores. Por fim, diferentemente do que ocorre atual- mente, quando a utilização dos estimadores-B e MI é feita de maneira completamente ad-hoc, há o objetivo de fornecer a usuários informação que permita uma escolha mais objetiva de qual estimador usar quando se está trabalhando com uma amostra finita.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
In this paper we use Markov chain Monte Carlo (MCMC) methods in order to estimate and compare GARCH models from a Bayesian perspective. We allow for possibly heavy tailed and asymmetric distributions in the error term. We use a general method proposed in the literature to introduce skewness into a continuous unimodal and symmetric distribution. For each model we compute an approximation to the marginal likelihood, based on the MCMC output. From these approximations we compute Bayes factors and posterior model probabilities. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
The discrete-time Markov chain is commonly used in describing changes of health states for chronic diseases in a longitudinal study. Statistical inferences on comparing treatment effects or on finding determinants of disease progression usually require estimation of transition probabilities. In many situations when the outcome data have some missing observations or the variable of interest (called a latent variable) can not be measured directly, the estimation of transition probabilities becomes more complicated. In the latter case, a surrogate variable that is easier to access and can gauge the characteristics of the latent one is usually used for data analysis. ^ This dissertation research proposes methods to analyze longitudinal data (1) that have categorical outcome with missing observations or (2) that use complete or incomplete surrogate observations to analyze the categorical latent outcome. For (1), different missing mechanisms were considered for empirical studies using methods that include EM algorithm, Monte Carlo EM and a procedure that is not a data augmentation method. For (2), the hidden Markov model with the forward-backward procedure was applied for parameter estimation. This method was also extended to cover the computation of standard errors. The proposed methods were demonstrated by the Schizophrenia example. The relevance of public health, the strength and limitations, and possible future research were also discussed. ^
Resumo:
In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^