1000 resultados para Line
Resumo:
Calibration is essential for interpretation of radiocarbon dates, especially when the 14C dates are compared to historical or climatic records with a different chronological basis. 14C ages of samples from the marine environment, such as shells or fish bones, or samples with a marine component, such as human bone in coastal regions, require an additional consideration because of the reservoir age of the ocean. While the pre-industrial global mean reservoir correction, R(t), is about 400 years, local variations (?R) can be several hundred years or more. ?R compilations on a global scale have been undertaken previously (Stuiver et al. 1986; Stuiver and Braziunas 1993), but have not been updated recently. Here we describe an on-line reservoir correction database accessed via mapping software. Rather than publishing a static ?R compilation, new data will be incorporated when it becomes available. The on-line marine reservoir correction database can be accessed at the website http://www.calib.org/.
Resumo:
Thymidylate synthase (TS) is responsible for the de novo synthesis of thymidylate, which is required for DNA synthesis and repair and which is an important target for fluoropyrimidines such as 5-fluorouracil (5-FU), and antifolates such as Tomudex (TDX), ZD9331, and multitargeted antifolate (MTA). To study the importance of TS expression in determining resistance to these agents, we have developed an MDA435 breast cancer-derived cell line with tetracycline-regulated expression of TS termed MTS-5. We have demonstrated that inducible expression of TS increased the IC(50) dose of the TS-targeted therapeutic agents 5-FU, TDX, and ZD9331 by 2-, 9- and 24-fold respectively. An IC(50) dose for MTA was unobtainable when TS was overexpressed in these cells, which indicated that MTA toxicity is highly sensitive to increased TS expression levels. The growth inhibitory effects of the chemotherapeutic agents CPT-11, cisplatin, oxaliplatin, and Taxol were unaffected by TS up-regulation. Cell cycle analyses revealed that IC(50) doses of 5-FU, TDX and MTA caused an S-phase arrest in cells that did not overexpress TS, and this arrest was overcome when TS was up-regulated. Furthermore, the S-phase arrest was accompanied by 2- to 4-fold increased expression of the cell cycle regulatory genes cyclin E, cyclin A, and cyclin dependent kinase 2 (cdk2). These results indicate that acute increases in TS expression levels play a key role in determining cellular sensitivity to TS-directed chemotherapeutic drugs by modulating the degree of S-phase arrest caused by these agents. Moreover, CPT-11, cisplatin, oxaliplatin, and Taxol remain highly cytotoxic in cells that overexpress TS.
Resumo:
An analysis of radiative transfer effects present in the Fe XV ion stage of solar and stellar coronal plasmas provides a general explanation of line radiation intensity enhancement above the optically thin limit. Full linearization radiation transfer is compared with the escape factor method and found to be in good agreement at the lower column densities. An angular study of the enhancement shows that symmetry factors are of great importance. This gives a possible reason for the indeterminate status of opacity in relation to coronal lines of distant stellar sources, where only emission integrated across the whole surface is detected.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in Ni XII are used to derive the emission line ratios R-1 = I(154.17 Angstrom)/I(152.15 Angstrom), R-2 = I(152.95 Angstrom)/I(152.15 Angstrom) and R-3 = 1(160.55 Angstrom)/I(152.15 Angstrom). This is the first time (to our knowledge) that theoretical emission line ratios have been calculated for this ion. The ratios are found to be insensitive to changes in the adopted electron density (N-e) when N-e greater than or equal to 5 x 10(11) cm(-3), typical of laboratory plasmas. However, they do vary with electron temperature (T-e), with for example R-1 and R-3 changing by factors of 1.3 and 1.8, respectively, between T-e = 10(5) and 10(6) K. A comparison of the theoretical line ratios with measurements from the Joint European Tents (JET) tokamak reveals very good agreement between theory and observation for R-1, with an average discrepancy of only 7%. Agreement between the calculated and experimental ratios for R-2 and R-3 is less satisfactory, with average differences of 30 and 33%, respectively. These probably arise from errors in the JET instrument calibration curve. However, the discrepancies are smaller than the uncertainties in the R-2 and R-3 measurements. Our results, in particular for R-1, provide experimental support for the accuracy of the Ni XIII line ratio calculations, and hence for the atomic data adopted in their derivation.
Resumo:
R-matrix calculations of electron impact excitation rates among the 2s(2)2p(2) P-3, D-1, S-1, and 2s2p(3) S-5 levels of N II are presented. These results are used in conjunction with other recent calculations of electron impact excitation rates and Einstein A-coefficients for N II to derive the emission-line ratio: ratio diagrams and where (R-1, R-2) (R-1, R-3), where R-1 = I(5756.2 Angstrom)/I(6549.9 + 6585.2 Angstrom), R-2 = I(2143.5 Angstrom)/I(6549.9 + 6585.2 Angstrom), and R-3 = I(2139.7 Angstrom)/I(6549.9 + 658.2 Angstrom), for a range of electron temperatures (T-e = 5000-20,000 K) and electron densities (N-e = 10(2)-10(7) cm(-3)) appropriate to gaseous nebulae. These diagrams should, in principle, allow the simultaneous determination of T-e and N-e from measurements of the [N II] lines in a spectrum. Plasma parameters deduced for a sample of gaseous nebulae, using observational data obtained from ground-based telescopes plus the International Ultraviolet Explorer and Hubble Space Telescope satellites, are found to show generally excellent internal consistency and to be in good agreement with the values of T-e and N-e estimated from other line ratios. These results provide observational support for the accuracy of the theoretical ratios and hence the atomic data adopted in their derivation. Theoretical ratios are also presented for the infrared line pair R-4 = I(122 mum)/I(205 mum), and the usefulness of R-4 as an electron density diagnostic is briefly discussed.
Resumo:
Recent R-matrix calculations of electron impact excitation rates in N-like Si VIII are used to derive theoretical emission line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 216 -320 Angstrom wavelength range. A comparison of these with an extensive dataset of solar active region, quiet- Sun, sub-flare and off-limb observations, obtained during rocket flights of the Solar EUV Research Telescope and Spectrograph (SERTS), indicates that the ratio R-1 = I(216.94 Angstrom)/I(319.84 Angstrom) may provide a usable electron density diagnostic for coronal plasmas. The ratio involves two lines of comparable intensity, and varies by a factor of about 5 over the useful density range of 10(8)-10(11) cm(-3). However R-2 = I(276.85 Angstrom)/I(319.84 Angstrom) and R-3 = I(277.05 Angstrom)/I(319.84 Angstrom) show very poor agreement between theory and observation, due to the severe blending of the 276.85 and 277.05 Angstrom lines with Si VII and Mg VII transitions, respectively, making the ratios unsuitable as density diagnostics. The 314.35 Angstrom feature of Si VIII also appears to be blended, with the other species contributing around 20% to the total line flux.
Resumo:
R-matrix calculations of electron impact excitation rates in N-like Mg vi are used to derive theoretical electron-density-sensitive emission line ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 269-403 Angstrom wavelength range. A comparison of these with observations of a solar active region, obtained during the 1989 flight of the Solar EUV Rocket Telescope and Spectrograph (SERTS), reveals good agreement between theory and observation for the 2s(2)2p(3) S-4-2s2p(4) P-4 transitions at 399.28, 400.67, and 403.30 Angstrom, and the 2s(2)2p(3) P-2-2s2p(4) D-2 lines at 387.77 and 387.97 Angstrom. However, intensities for the other lines attributed to Mg vi in this spectrum by various authors do not match the present theoretical predictions. We argue that these discrepancies are not due to errors in the adopted atomic data, as previously suggested, but rather to observational uncertainties or mis-identifications. Some of the features previously identified as Mg vi lines in the SERTS spectrum, such as 291.36 and 293.15 Angstrom, are judged to be noise, while others (including 349.16 Angstrom) appear to be blended.