966 resultados para Lightweight and heavyweight concrete


Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the important factors in the use of portland cement concrete is its durability, and most of the situations where durability is lacking have been identifi ed and strategies to manage durability have been implemented. Geopolymer concrete, made from an alkali-activated natural pozzolan (AANP), provides an important opportunity for the reduction of carbon dioxide (CO2) emissions associated with the manufacture of concrete but has a limited history of durability studies. Until its different properties are well understood there is no desire to adopt this new technology of unknown provenance by the concrete industry. This paper presents an experimental study of oxygen and chloride permeability of AANP concrete prepared by activating Taftan andesite and Shahindej dacite (Iranian natural pozzolans), with and without calcining, and the correlations between these properties and compressive strength. The results show that compared to ordinary portland cement (OPC) concrete, AANP concrete has lower oxygen permeability at later ages; but it shows moderate to high chloride ion penetrability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This demonstration project consisted of three adjacent highway resurfacing projects using asphalt cement concrete removed from an Interstate highway which had become severely rutted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this project was to evaluate the location and quantities of debonding in selected portland cement concrete (PCC) overlays. The project entailed an infrared thermographic survey and a ground penetrating radar survey of the PCC overlays to locate areas of debonding between the overlays and the original pavement. An infrared scanner is capable of locating these areas because of the temperature differential which is established between bonded and debonded areas under certain environmental conditions. A conventional video inspection of the top surface of the pavement was also completed in conjunction with the infrared thermographic survey to record the visual condition of the pavement surface. The ground penetrating radar system is capable of locating areas of debonding by detecting return wave forms generated by changes in the dielectric properties at the PCC overlay original pavement interface. This report consists of two parts; a text and a set of plan sheets. The text summarizes the procedures, analyses and conclusions of the investigation. The plan sheets locate specific areas of debonding, as identified through field observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pavements tend to deteriorate with time under repeated traffic and/or environmental loading. By detecting pavement distresses and damage early enough, it is possible for transportation agencies to develop more effective pavement maintenance and rehabilitation programs and thereby achieve significant cost and time savings. The structural health monitoring (SHM) concept can be considered as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their condition. Over the past several years, this process has traditionally been accomplished through the use of wired sensors embedded in bridge and highway pavement. However, the use of wired sensors has limitations for long-term SHM and presents other associated cost and safety concerns. Recently, micro-electromechanical sensors and systems (MEMS) and nano-electromechanical systems (NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-effective and long-term SHM. This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) MEMS sensors embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of concrete pavement (Final Report Volume II).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The basic objective of this work is to evaluate the durability of self-compacting concrete (SCC) produced in binary and ternary mixes using fly ash (FA) and limestone filler (LF) as partial replacement of cement. The main characteristics that set SCC apart from conventional concrete (fundamentally its fresh state behaviour) essentially depend on the greater or lesser content of various constituents, namely: greater mortar volume (more ultrafine material in the form of cement and mineral additions); proper control of the maximum size of the coarse aggregate; use of admixtures such as superplasticizers. Significant amounts of mineral additions are thus incorporated to partially replace cement, in order to improve the workability of the concrete. These mineral additions necessarily affect the concrete's microstructure and its durability. Therefore, notwithstanding the many well-documented and acknowledged advantages of SCC, a better understanding its behaviour is still required, in particular when its composition includes significant amounts of mineral additions. An ambitious working plan was devised: first, the SCC's microstructure was studied and characterized and afterwards the main transport and degradation mechanisms of the SCC produced were studied and characterized by means of SEM image analysis, chloride migration, electrical resistivity, and carbonation tests. It was then possible to draw conclusions about the SCC's durability. The properties studied are strongly affected by the type and content of the additions. Also, the use of ternary mixes proved to be extremely favourable, confirming the expected beneficial effect of the synergy between LF and FA.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The text came from the UNESP-Project in Partnership with the Public Administration: City of Echaporã ‖, a multidisciplinary project, interdepartmental and that results from a term partnership signed between the State University / Campus Marilia, the Regional Office of Articulation Planning and the Municipality of Echaporã.Given the serious social problems diagnosed in this county Administrative Region of Marilia, somaramse forces and, since April 2002, Echaporã account with the performance of a design matrix that involves the community in six (6) subprojects, among which a which emphasizes the dissemination of information (the public library as a center of information and knowledge irradiator for urban and rural areas, seeking to enter the Society daInformação). By their nature, the project-matrix is considered open and can accommodate new subprojects, where they concern the problems identified in the initial diagnosis. For its validity, each subproject has its own methodology, some innovative and will be subject to further systematization and dissemination, however, after a few months of deployment, the results show the correctness of community involvement (being representative) in all discussions and steps of research, and activities developed, widely disseminated to the target audience. The membership of the community, the leaders and the authorities can be considered a good barometer of the actions carried out in Echaporã and evidence of change in information culture that is already noticeable in the city, setting the socio-cultural dynamics of the same, in terms a new public policy to be strengthened with the participation of specialists in this specific area, in direct work with local managers, in this case, specific examples relating to the strength of information in the process of change in small municipalities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work was motivated by the extensive research on lithium solid state materials, which have attracted increasing interest for potential applications in hydrogen storage and/or lithium ion batteries due to their extraordinary properties. In this thesis, LiBH4-derived materials, LiInBr4 and complex phases based on lithium ammonia borane with potential use as solid state electrolytes were successfully synthesised and characterised.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis I investigate issues of post-war concrete buildings and how we can both add value and make adaptable what we have traditionally defined as not valuable and not adaptable. 55% of United States’ commercial building stock was built between the years of 1960 and 1980, leaving 36 billion square feet of building material to be adaptively reused or at the bottom of a landfill. Currently, our culture does not value many character defining features of these buildings making the preservation of these buildings difficult, especially at this 50 year critical moment of both the attribution of a “historic” status and time when major renovation of these buildings needs to occur. How can architects add value to a building type, sometimes called “brutalist”, that building culture currently under values and thinks is “obsolete”? I tested this hypothesis using the James Forrestal Building in Washington D.C. After close study of the obsolescence, value,history and existing conditions, I propose a design that adds value to Southwest Washington D.C. and may serve as an example for post-war renewal around the country.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract In many parts of the world, corrosion of reinforcing steel in concrete induced by carbonation of the concrete continues to be a major durability concern. This paper investigates the accelerated and natural carbonation resistance of a set of seven concretes, specifically evaluating the effects of internal curing and/or shrinkage/viscosity modifiers on carbonation resistance. In addition to five different ordinary portland cement (OPC) concretes, two concretes containing 20 % of a Class F fly ash as replacement for cement on a mass basis are also evaluated. For all seven concrete mixtures, a good correlation between accelerated (lab) and natural (field) measured carbonation coefficients is observed. Conversely, there is less correlation observed between the specimens’ carbonation resistance and their respective 28 days compressive strengths, with the mixtures containing the shrinkage/viscosity modifier specifically exhibiting an anomalous behavior of higher carbonation resistance at lower strength levels. For both the accelerated and natural exposures, the lowest carbonation coefficients are obtained for two mixtures, one containing the shrinkage/viscosity modifier added in the mixing water and the other containing a solution of the same admixture used to pre-wet fine lightweight aggregate. Additionally, the fly ash mixtures exhibited a significantly higher carbonation coefficient in both exposures than their corresponding OPC concretes.