960 resultados para Light water reactors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coastal upwelling system off the coast of Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. From 3 to 23 December 2012, R/V Meteor (M91) cruise took place in the Peruvian upwelling system between 4.59 and 15.4°S, and 82.0 to 77.5°W. During M91 we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like chromophoric dissolved organic matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. We analyzed SML and underlying water (ULW) samples at 38 stations focusing on CDOM spectral characteristics as indicator of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and excitation-emission matrix fluorescence (EEMs), which allow us to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. Spectral slope S varied between 0.012 to 0.043 1 nm-1 and was quite similar between SML and ULW, with no significant differences between the two compartments. Higher S values were observed in the ULW of the southern stations below 15°S. By EEMs, we identified five fluorescent components (F1-5) of the CDOM pool, of which two had excitation/emission characteristics of amino-acid-like fluorophores (F1, F4) and were highly enriched in the SML, with a median ratio SML : ULW of 1.5 for both fluorophores. In the study region, values for CDOM absorption ranged from 0.07 to 1.47 m-1. CDOM was generally highly concentrated in the SML, with a median enrichment with respect to the ULW of 1.2. CDOM composition and changes in spectral slope properties suggested a local microbial release of DOM directly in the SML as a response to light exposure in this extreme environment. In a conceptual model of the sources and modifications of optically active DOM in the SML and underlying seawater (ULW), we describe processes we think may take place (Fig. 1); the production of CDOM of higher MW by microbial release through growth, exudation and lysis in the euphotic zone, includes the identified fluorophores (F1, F2, F3, F4, F5). Specific amino-acid-like fluorophores (F1, F4) accumulate in the SML with respect to the ULW, as photochemistry may enhance microbial CDOM release by (a) photoprotection mechanisms and (b) cell-lysis processes. Microbial and photochemical degradation are potential sinks of the amino-acid-like fluorophores (F1, F4), and potential sources of reworked and more refractory humic-like components (F2, F3, F5). In the highly productive upwelling region along the Peruvian coast, the interplay of microbial and photochemical processes controls the enrichment of amino-acid-like CDOM in the SML. We discuss potential implications for air-sea gas exchange in this area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of light and elevated pCO2 on the growth and photochemical efficiency of the critically endangered staghorn coral, Acropora cervicornis, were examined experimentally. Corals were subjected to high and low treatments of CO2 and light in a fully crossed design and monitored using 3D scanning and buoyant weight methodologies. Calcification rates, linear extension, as well as colony surface area and volume of A. cervicornis were highly dependent on light intensity. At pCO2 levels projected to occur by the end of the century from ocean acidification (OA), A. cervicornis exhibited depressed calcification, but no change in linear extension. Photochemical efficiency (F v /F m ) was higher at low light, but unaffected by CO2. Amelioration of OA-depressed calcification under high-light treatments was not observed, and we suggest that the high-light intensity necessary to reach saturation of photosynthesis and calcification in A. cervicornis may limit the effectiveness of this potentially protective mechanism in this species. High CO2 causes depressed skeletal density, but not linear extension, illustrating that the measurement of extension by itself is inadequate to detect CO2 impacts. The skeletal integrity of A. cervicornis will be impaired by OA, which may further reduce the resilience of the already diminished populations of this endangered species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification may benefit algae that are able to capitalize on increased carbon availability for photosynthesis, but it is expected to have adverse effects on calcified algae through dissolution. Shifts in dominance between primary producers will have knock-on effects on marine ecosystems and will likely vary regionally, depending on factors such as irradiance (light vs. shade) and nutrient levels (oligotrophic vs. eutrophic). Thus experiments are needed to evaluate interactive effects of combined stressors in the field. In this study, we investigated the physiological responses of macroalgae near a CO2 seep in oligotrophic waters off Vulcano (Italy). The algae were incubated in situ at 0.2 m depth using a combination of three mean CO2 levels (500, 700-800 and 1200 µatm CO2), two light levels (100 and 70% of surface irradiance) and two nutrient levels of N, P, and K (enriched vs. non-enriched treatments) in the non-calcified macroalga Cystoseira compressa (Phaeophyceae, Fucales) and calcified Padina pavonica (Phaeophyceae, Dictyotales). A suite of biochemical assays and in vivo chlorophyll a fluorescence parameters showed that elevated CO2 levels benefitted both of these algae, although their responses varied depending on light and nutrient availability. In C. compressa, elevated CO2 treatments resulted in higher carbon content and antioxidant activity in shaded conditions both with and without nutrient enrichment-they had more Chla, phenols and fucoxanthin with nutrient enrichment and higher quantum yield (Fv/Fm) and photosynthetic efficiency (alpha ETR) without nutrient enrichment. In P. pavonica, elevated CO2 treatments had higher carbon content, Fv/Fm, alpha ETR, and Chla regardless of nutrient levels-they had higher concentrations of phenolic compounds in nutrient enriched, fully-lit conditions and more antioxidants in shaded, nutrient enriched conditions. Nitrogen content increased significantly in fertilized treatments, confirming that these algae were nutrient limited in this oligotrophic part of the Mediterranean. Our findings strengthen evidence that brown algae can be expected to proliferate as the oceans acidify where physicochemical conditions, such as nutrient levels and light, permit.