705 resultados para Legume Medicago-truncatula
Resumo:
To test the hypothesis that enhanced tolerance of oxidative stress would improve winter survival, two clones of alfalfa (Medicago sativa) were transformed with a Mn-superoxide dismutase (Mn-SOD) targeted to the mitochondria or to the chloroplast. Although Mn-SOD activity increased in most primary transgenic plants, both cytosolic and chloroplastic forms of Cu/Zn-SOD had lower activity in the chloroplast SOD transgenic plants than in the nontransgenic plants. In a field trial at Elora, Ontario, Canada, the survival and yield of 33 primary transgenic and control plants were compared. After one winter most transgenic plants had higher survival rates than control plants, with some at 100%. Similarly, some independent transgenic plants had twice the herbage yield of the control plants. Prescreening the transgenic plants for SOD activity, vigor, or freezing tolerance in the greenhouse was not effective in identifying individual transgenic plants with improved field performance. Freezing injury to leaf blades and fibrous roots, measured by electrolyte leakage from greenhouse-grown acclimated plants, indicated that the most tolerant were only 1°C more freezing-tolerant than alfalfa clone N4. There were no differences among transgenic and control plants for tetrazolium staining of field-grown plants at any freezing temperature. Therefore, although many of the transgenic plants had higher winter survival rates and herbage yield, there was no apparent difference in primary freezing injury, and therefore, the trait is not associated with a change in the primary site of freezing injury.
Resumo:
In legume nodules the [O2] in the infected cells limits respiration and nitrogenase activity, becoming more severe if nodules are exposed to subambient O2 levels. To identify the site of O2 limitation, adenylate pools were measured in soybean (Glycine max) nodules that were frozen in liquid N2 before being ground, lyophilized, sonicated, and separated on density gradients of nonaqueous solvents (heptane/tetrachloroethylene) to yield fractions enriched in bacteroid or plant components. In nodules maintained in air, the adenylate energy charge (AEC = [ATP + 0.5 ADP]/[ATP + ADP + AMP]) was lower in the plant compartment (0.65 ± 0.04) than in the bacteroids (0.76 ± 0.095), but did not change when the nodulated root system was exposed to 10% O2. In contrast, 10% O2 decreased the bacteroid AEC to 0.56 ± 0.06, leading to the conclusion that they are the primary site of O2 limitation in nodules. To account for the low but unchanged AEC in the plant compartment and for the evidence that mitochondria are localized in O2-enriched microenvironments adjacent to intercellular spaces, we propose that steep adenylate gradients may exist between the site of ATP synthesis (and ADP use) in the mitochondria and the extra-mitochondrial sites of ATP use (and ADP production) throughout the large, infected cells.
Resumo:
Heme and chlorophyll accumulate to high levels in legume root nodules and in photosynthetic tissues, respectively, and they are both derived from the universal tetrapyrrole precursor δ-aminolevulinic acid (ALA). The first committed step in ALA and tetrapyrrole synthesis is catalyzed by glutamyl-tRNA reductase (GTR) in plants. A soybean (Glycine max) root-nodule cDNA encoding GTR was isolated by complementation of an Escherichia coli GTR-defective mutant for restoration of ALA prototrophy. Gtr mRNA was very low in uninfected roots but accumulated to high levels in root nodules. The induction of Gtr mRNA in developing nodules was subsequent to that of the gene Enod2 (early nodule) and coincided with leghemoglobin mRNA accumulation. Genomic analysis revealed two Gtr genes, Gtr1 and a 3′ portion of Gtr2, which were isolated from the soybean genome. RNase-protection analysis using probes specific to Gtr1 and Gtr2 showed that both genes were expressed, but Gtr1 mRNA accumulated to significantly higher levels. In addition, the qualitative patterns of expression of Gtr1 and Gtr2 were similar to each other and to total Gtr mRNA in leaves and nodules of mature plants and etiolated plantlets. The data indicate that Gtr1 is universal for tetrapyrrole synthesis and that a Gtr gene specific for a tissue or tetrapyrrole is unlikely. We suggest that ALA synthesis in specialized root nodules involves an altered spatial expression of genes that are otherwise induced strongly only in photosynthetic tissues of uninfected plants.
Resumo:
Alfalfa (Medicago sativa L.) roots contain large quantities of β-amylase, but little is known about its role in vivo. We studied this by isolating a β-amylase cDNA and by examining signals that affect its expression. The β-amylase cDNA encoded a 55.95-kD polypeptide with a deduced amino acid sequence showing high similarity to other plant β-amylases. Starch concentrations, β-amylase activities, and β-amylase mRNA levels were measured in roots of alfalfa after defoliation, in suspension-cultured cells incubated in sucrose-rich or -deprived media, and in roots of cold-acclimated germ plasms. Starch levels, β-amylase activities, and β-amylase transcripts were reduced significantly in roots of defoliated plants and in sucrose-deprived cell cultures. β-Amylase transcript was high in roots of intact plants but could not be detected 2 to 8 d after defoliation. β-Amylase transcript levels increased in roots between September and October and then declined 10-fold in November and December after shoots were killed by frost. Alfalfa roots contain greater β-amylase transcript levels compared with roots of sweetclover (Melilotus officinalis L.), red clover (Trifolium pratense L.), and birdsfoot trefoil (Lotus corniculatus L.). Southern analysis indicated that β-amylase is present as a multigene family in alfalfa. Our results show no clear association between β-amylase activity or transcript abundance and starch hydrolysis in alfalfa roots. The great abundance of β-amylase and its unexpected patterns of gene expression and protein accumulation support our current belief that this protein serves a storage function in roots of this perennial species.
Resumo:
The biosynthesis of monolignols can potentially occur via two parallel pathways involving free acids or their coenzyme A (CoA) esters. Caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) catalyze functionally identical reactions in these two pathways, resulting in the formation of mono- or dimethoxylated lignin precursors. The activities of the two enzymes increase from the first to the sixth internode in stems of alfalfa (Medicago sativa L.), preceding the deposition of lignin. Alfalfa CCOMT is highly similar at the amino acid sequence level to the CCOMT from parsley, although it contains a six-amino acid insertion near the N terminus. Transcripts encoding both COMT and CCOMT are primarily localized to vascular tissue in alfalfa stems. Alfalfa CCOMT expressed in Escherichia coli catalyzes O-methylation of caffeoyl and 5-hydroxyferuloyl CoA, with preference for caffeoyl CoA. It has low activity against the free acids. COMT expressed in E. coli is active against both caffeic and 5-hydroxyferulic acids, with preference for the latter compound. Surprisingly, very little extractable O-methyltransferase activity versus 5-hydroxyferuloyl CoA is present in alfalfa stem internodes, in which relative O-methyltransferase activity against 5-hy-droxyferulic acid increases with increasing maturity, correlating with increased lignin methoxyl content.
Resumo:
Early nodulin 2 (ENOD2) transcripts and protein are specifically found in the inner cortex of legume nodules, a location that coincides with the site of a barrier to O2 diffusion. The extracellular glycoprotein that binds the monoclonal antibody MAC236 has also been localized to this site. Thus, it has been proposed that these proteins function in the regulation of nodule permeability to O2 diffusion. It would then be expected that the levels of ENOD2 mRNA/protein and MAC236 antigen would differ in nodules with different permeabilities to O2. We examined the expression of ENOD2 and other nodule-expressed genes in Rhizobium meliloti-induced alfalfa nodules grown under 8, 20, or 50% O2. Although there was a change in the amount of MAC236 glycoprotein, the levels of ENOD2 mRNA and protein did not differ significantly among nodules grown at the different [O2], suggesting that neither ENOD2 transcription nor synthesis is involved in the long-term regulation of nodule permeability. Moreover, although nodules from all treatments reduced their permeability to O2 as the partial pressure of O2 (pO2) was increased to 100%, the levels of extractable ENOD2 and MAC236 proteins did not differ from those measured at the growth pO2, further suggesting that if these proteins are involved in a short-term regulation of the diffusion barrier, they must be involved in a way that does not require increased transcription or protein synthesis.
Resumo:
Molecules produced by Rhizobium meliloti increase respiration of alfalfa (Medicago sativa L.) roots. Maximum respiratory increases, measured either as CO2 evolution or as O2 uptake, were elicited in roots of 3-d-old seedlings by 16 h of exposure to living or dead R. meliloti cells at densities of 107 bacteria/mL. Excising roots after exposure to bacteria and separating them into root-tip- and root-hair-containing segments showed that respiratory increases occurred only in the root-hair region. In such assays, CO2 production by segments with root hairs increased by as much as 100% in the presence of bacteria. Two partially purified compounds from R. meliloti 1021 increased root respiration at very low, possibly picomolar, concentrations. One factor, peak B, resembled known pathogenic elicitors because it produced a rapid (15-min), transitory increase in respiration. A second factor, peak D, was quite different because root respiration increased slowly for 8 h and was maintained at the higher level. These molecules differ from lipo-chitin oligosaccharides active in root nodulation for the following reasons: (a) they do not curl alfalfa root hairs, (b) they are synthesized by bacteria in the absence of known plant inducer molecules, and (c) they are produced by a mutant R. meliloti that does not synthesize known lipo-chitin oligosaccharides. The peak-D compound(s) may benefit both symbionts by increasing CO2, which is required for growth of R. meliloti, and possibly by increasing the energy that is available in the plant to form root nodules.
Resumo:
The application of a moderate water deficit (water potential of −1.3 MPa) to pea (Pisum sativum L. cv Lincoln) leaves led to a 75% inhibition of photosynthesis and to increases in zeaxanthin, malondialdehyde, oxidized proteins, and mitochondrial, cytosolic, and chloroplastic superoxide dismutase activities. Severe water deficit (−1.9 MPa) almost completely inhibited photosynthesis, decreased chlorophylls, β-carotene, neoxanthin, and lutein, and caused further conversion of violaxanthin to zeaxanthin, suggesting damage to the photosynthetic apparatus. There were consistent decreases in antioxidants and pyridine nucleotides, and accumulation of catalytic Fe, malondialdehyde, and oxidized proteins. Paraquat (PQ) treatment led to similar major decreases in photosynthesis, water content, proteins, and most antioxidants, and induced the accumulation of zeaxanthin and damaged proteins. PQ decreased markedly ascorbate, NADPH, ascorbate peroxidase, and chloroplastic Fe-superoxide dismutase activity, and caused major increases in oxidized glutathione, NAD+, NADH, and catalytic Fe. It is concluded that, in cv Lincoln, the increase in catalytic Fe and the lowering of antioxidant protection may be involved in the oxidative damage caused by severe water deficit and PQ, but not necessarily in the incipient stress induced by moderate water deficit. Results also indicate that the tolerance to water deficit in terms of oxidative damage largely depends on the legume cultivar.
Resumo:
ENOD40, an early nodulin gene, is expressed following inoculation with Rhizobium meliloti or by adding R. meliloti-produced nodulation (Nod) factors or the plant hormone cytokinin to uninoculated roots. We isolated two MsENOD40 clones, designated MsENOD40–1 and MsENOD40–2, with distinct promoters from an alfalfa (Medicago sativa cv Chief) genomic library. The promoters were fused to the reporter gene uidA (gus), and the constructs were introduced into alfalfa. We observed that the MsENOD40–1 construct was expressed almost exclusively under symbiotic conditions. The MsENOD40–2 construct was transcribed under both symbiotic and nonsymbiotic conditions and in nonnodular and nodular tissues. Both MsENOD40 promoter-gus constructs were similarly expressed as nodules developed, and both were expressed in roots treated with 6-benzylaminopurine or purified Nod factor. However, no blue color was detected in nodule-like structures induced by the auxin transport inhibitor N-1-(naphthyl)phthalamic acid on roots of plants containing the MsENOD40–1 promoter construct, whereas pseudonodules from plants containing the MsENOD40–2 promoter construct stained blue. A 616-bp region at the distal 5′ end of the promoter is important for proper spatial expression of MsENOD40 in nodules and also for Nod-factor and cytokinin-induced expression.
Resumo:
We have isolated a new hemoglobin gene from soybean. It is expressed in cotyledons, stems of seedlings, roots, young leaves, and in some cells in the nodules that are associated with the nitrogen-fixing Bradyrhizobium symbiont. This contrasts with the expression of the leghemoglobins, which are active only in the infected cells of the nodules. The deduced protein sequence of the new gene shows only 58% similarity to one of the soybean leghemoglobins, but 85-87% similarity to hemoglobins from the nonlegumes Parasponia, Casuarina, and barley. The pattern of expression and the gene sequence indicate that this new gene is a nonsymbiotic legume hemoglobin. The finding of this gene in legumes and similar genes in other species strengthens our previous suggestion that genomes of all plants contain hemoglobin genes. The specialized leghemoglobin gene family may have arisen from a preexisting nonsymbiotic hemoglobin by gene duplication.
Resumo:
Three plant sulfate transporter cDNAs have been isolated by complementation of a yeast mutant with a cDNA library derived from the tropical forage legume Stylosanthes hamata. Two of these cDNAs, shst1 and shst2, encode high-affinity H+/sulfate cotransporters that mediate the uptake of sulfate by plant roots from low concentrations of sulfate in the soil solution. The third, shst3, represents a different subtype encoding a lower affinity H+/sulfate cotransporter, which may be involved in the internal transport of sulfate between cellular or subcellular compartments within the plant. The steady-state level of mRNA corresponding to both subtypes is subject to regulation by signals that ultimately respond to the external sulfate supply. These cDNAs represent the identification of plant members of a family of related sulfate transporter proteins whose sequences exhibit significant amino acid conservation in filamentous fungi, yeast, plants, and mammals.
Resumo:
In response to infection by Rhizobium, highly differentiated organs called nodules form on legume roots. Within these organs, the symbiotic association between the host plant and bacteria is established. A putative plant transcription factor, NMH7, has been identified in alfalfa root nodules. nmh7 contains a MADS-box DNA-binding region and shows homology to flower homeotic genes. This gene is a member of a multigene family in alfalfa and was identified on the basis of nucleic acid homology to plant regulatory protein genes (MADS-box-containing genes) from Antirrhinum and Arabidopsis. RNA analysis and in situ hybridization showed that expression of this class of regulatory genes is limited to the infected cells of alfalfa root nodules and is likely to be involved in the signal transduction pathway initiated by the bacterial symbiont, Rhizobium meliloti. The expression of nmh7 in a root-derived organ is unusual for this class of regulatory genes.
Resumo:
Técnicas analíticas empregadas para a quantificação do teor de lignina em plantas forrageiras, atualmente em uso, são questionáveis quanto às suas acurácias. O método lignina detergente ácido (LDA), que é um dos métodos mais utilizado em Ciência Animal e Agronomia, apresenta algumas falhas, particularmente devido à parcial solubilização da lignina durante a preparação da fibra em detergente ácido (FDA). A lignina Klason (LK), outro método muito usado, apresenta o inconveniente de mensurar a proteína da parede celular como sendo lignina. Em ambos os procedimentos recomenda-se também mensurar cinzas nos resíduos de lignina. A quantificação da concentração de lignina pelo método espectrofotométrico lignina brometo de acetila (LBA) vem ganhando interesse de pesquisadores no Brasil e no exterior. Nesta metodologia, a lignina da planta contida na preparação parede celular (PC) é solubilizada numa solução a 25% de brometo de acetila em ácido acético e a absorbância mensurada é com luz UV a 280 nm. O valor da absorbância é inserido numa equação de regressão e a concentração de lignina é obtida. Para que esta técnica analítica seja mais aceita pelos pesquisadores, ela deve ser, obviamente, convincente e atrativa. O presente trabalho analisou alguns parâmetros relacionados à LBA em 7 gramíneas e 6 leguminosas, em dois estádios de maturidade. Dentre as diferentes temperaturas de pré-secagem, os resultados indicaram que os procedimentos de 55°C com ventilação e liofilização podem ser utilizados com a mesma eficácia. As temperaturas de 55°C sem ventilação e 80°C sem ventilação não são recomendadas, pois aumentaram os valores de FDA e LDA, possivelmente devido ao surgimento de artefatos de técnica como os compostos de Maillard. No método LBA os valores menores das amostras de leguminosas chamaram a atenção e colocaram em questão se a lignina destas plantas seria menos solúvel no reagente brometo de acetila. Dentre algumas alterações na metodologia da técnica LBA, a utilização do moinho de bolas (para diminuir o tamanho particular) nas amostras de PC não mostrou efeito; a hipótese era melhorar a solubilização da lignina usando partículas menores. O uso de um ultrasonicador, que aumenta a vibração das moléculas e assim, facilitaria a solubilização da lignina no reagente brometo de acetila, melhorou a solubilização da lignina em cerca de 10%, tanto nas gramíneas como nas leguminosas. Foi acoplado um ensaio biológico como referência, a degradabilidade in vitro da matéria seca (DIVMS); e como a lignina está intimamente associada à estrutura fibrosa da parede celular, também foi feito um ensaio de degradabilidade in vitro da fibra em detergente neutro (DIVFDN). Os resultados confirmaram o efeito da maturidade, reduzindo a degradabilidade nas plantas mais maduras, e que o teor de lignina de leguminosas é realmente inferior ao de gramíneas. Os resultados de degradabilidade apresentaram coeficientes de correlação mais elevados com o método LBA, quando foi empregada a técnica do ultrasom; o método LK mostrou os menores coeficientes. Também testou-se, com sucesso, a utilização da FDN, como preparação fibrosa, ao invés de PC. A razão é simples: enquanto que a FDN é amplamente conhecida, a preparação PC não o é. Inquestionável que esta manobra facilitará substancialmente a divulgação desse método, tornando-a mais aceitável pela comunidade científica
Resumo:
Se desconoce el efecto del sulfato de bario en los ecosistemas acuáticos donde se realizan actividades hidrocarburíferas y que vienen incrementándose a nivel nacional. Por tal motivo, se evaluó el riesgo ecológico del sulfato de bario empleando la respuesta ecotoxicológica de doce organismos no destinatarios a fin de conocer los posibles efectos que este compuesto pudiera estar ocasionando a los organismos relacionados a los ecosistemas marinos y epicontinentales donde se desarrollan actividades hidrocarburíferas. Las pruebas ecotoxicológicas incluyeron a las microalgas Isochrysis sp., Chlorella sp., las plantas terrestres Medicago sativa y Zea mays, los crustáceos Daphnia sp., Emerita analoga y Apohyale sp., al equinodermo Tetrapygus niger, al insecto acuático Chironomus calligraphus, y a los peces Odontesthes regia regia, Poecilia reticulata y Paracheirodon innesi. Las mediciones de los parámetros y protocolos para las pruebas como la determinación del riesgo ecológico siguieron las pautas y recomendaciones de la USEPA y otros autores. De los principales resultados ecotoxicológicos con sulfato de bario y sus formas solubles, se obtuvo un efecto negativo del sulfato de bario sobre el crecimiento celular de la microalga epicontinental Chlorella sp. (96 h), que registró una concentración de inhibición media (CI50) de 0,1 g/L y una concentración efectiva no observable (NOEC) de 0,02 g/L. Así mismo, se obtuvo un efecto negativo del bario sobre el crecimiento foliar de la planta terrestre monocotiledónea Z. mays (10 d) que registró una concentración efectiva media (CE50) de 0,0011 g/L y una NOEC de 0,0002 g/L. Finalmente, se concluye que existe alto riesgo ecológico (RQ) del sulfato de bario (RQ = 1,224) y sus formas solubles (RQ = 37 500) empleando la respuesta ecotoxicológica de doce organismos no destinatarios.