889 resultados para Large-scale Structure Of Universe


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social networks are static illustrations of dynamic societies, within which social interactions are constantly changing. Fundamental sources of variation include ranging behaviour and temporal demographic changes. Spatiotemporal dynamics can favour or limit opportunities for individuals to interact, and then a network may not essentially represent social processes. We examined whether a social network can embed such nonsocial effects in its topology, whereby emerging modules depict spatially or temporally segregated individuals. To this end, we applied a combination of spatial, temporal and demographic analyses to a long-term study of the association patterns of Guiana dolphins, Sotalia guianensis. We found that association patterns are organized into a modular social network. Space use was unlikely to reflect these modules, since dolphins' ranging behaviour clearly overlapped. However, a temporal demographic turnover, caused by the exit/entrance of individuals (most likely emigration/immigration), defined three modules of associations occurring at different times. Although this factor could mask real social processes, we identified the temporal scale that allowed us to account for these demographic effects. By looking within this turnover period (32 months), we assessed fission-fusion dynamics of the poorly known social organization of Guiana dolphins. We highlight that spatiotemporal dynamics can strongly influence the structure of social networks. Our findings show that hypothetical social units can emerge due to the temporal opportunities for individuals to interact. Therefore, a thorough search for a satisfactory spatiotemporal scale that removes such nonsocial noise is critical when analysing a social system. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scheme is presented in which an organic solvent environment in combination with surfactants is used to confine a natively unfolded protein inside an inverse microemulsion droplet. This type of confinement allows a study that provides unique insight into the dynamic structure of an unfolded, flexible protein which is still solvated and thus under near-physiological conditions. In a model system, the protein osteopontin (OPN) is used. It is a highly phosphorylated glycoprotein that is expressed in a wide range of cells and tissues for which limited structural analysis exists due to the high degree of flexibility and large number of post-translational modifications. OPN is implicated in tissue functions, such as inflammation and mineralisation. It also has a key function in tumour metastasis and progression. Circular dichroism measurements show that confinement enhances the secondary structural features of the protein. Small-angle X-ray scattering and dynamic light scattering show that OPN changes from being a flexible protein in aqueous solution to adopting a less flexible and more compact structure inside the microemulsion droplets. This novel approach for confining proteins while they are still hydrated may aid in studying the structure of a wide range of natively unfolded proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of cosmic rays at all energies is still uncertain. In this paper, we present and explore an astrophysical scenario to produce cosmic rays with energy ranging from below 10(15) to 3 x 10(20) eV. We show here that just our Galaxy and the radio galaxy Cen A, each with their own galactic cosmic-ray particles but with those from the radio galaxy pushed up in energy by a relativistic shock in the jet emanating from the active black hole, are sufficient to describe the most recent data in the PeV to near ZeV energy range. Data are available over this entire energy range from the KASCADE, KASCADE-Grande, and Pierre Auger Observatory experiments. The energy spectrum calculated here correctly reproduces the measured spectrum beyond the knee and, contrary to widely held expectations, no other extragalactic source population is required to explain the data even at energies far below the general cutoff expected at 6 x 10(19) eV, the Greisen-Zatsepin-Kuz'min turnoff due to interaction with the cosmological microwave background. We present several predictions for the source population, the cosmic-ray composition, and the propagation to Earth which can be tested in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is an observational study of the large-scale moisture transport over South America, with some analyses on its relation to subtropical rainfall. The concept of aerial rivers is proposed as a framework: it is an analogy between the main pathways of moisture flow in the atmosphere and surface rivers. Opposite to surface rivers, aerial rivers gain (lose) water through evaporation (precipitation). The magnitude of the vertically integrated moisture transport is discharge, and precipitable water is like the mass of the liquid column-multiplied by an equivalent speed it gives discharge. Trade wind flow into Amazonia, and the north/northwesterly flow to the subtropics, east of the Andes, are aerial rivers. Aerial lakes are the sections of a moisture pathway where the flow slows down and broadens, because of diffluence, and becomes deeper, with higher precipitable water. This is the case over Amazonia, downstream of the trade wind confluence. In the dry season, moisture from the aerial lake is transported northeastward, but weaker flow over southern Amazonia heads southward toward the subtropics. Southern Amazonia appears as a source of moisture to this flow. Aerial river discharge to the subtropics is comparable to that of the Amazon River. The variations of the amount of moisture coming from Amazonia have an important effect over the variability of discharge. Correlations between the flow from Amazonia and subtropical rainfall are not strong. However, some months within the set of dry seasons observed showed a strong increase (decrease) occurring together with an important increase (decrease) in subtropical rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims. Spectroscopic, polarimetric, and high spectral resolution interferometric data covering the period 1995-2011 are analyzed to document the transition into a new phase of circumstellar disk activity in the classical Be-shell star 48 Lib. The objective is to use this broad data set to additionally test disk oscillations as the basic underlying dynamical process. Methods. The long-term disk evolution is described using the V/R ratio of the violet and red emission components of H alpha and Br gamma, radial velocities and profiles of He I and optical metal shell lines, as well as multi-band BVRI polarimetry. Single-epoch broad-band and high-resolution interferometric visibilities and phases are discussed with respect to a classical disk model and the given baseline orientations. Results. Spectroscopic signatures of disk asymmetries in 48 Lib vanished in the late nineties but recovered some time between 2004 and 2007, as shown by a new large-amplitude and long-duration V/R cycle. Variations in the radial velocity and line profile of conventional shell lines correlate with the V/R behavior. They are shared by narrow absorption cores superimposed on otherwise seemingly photospheric He I lines, which may form in high-density gas at the inner disk close to the photosphere. Large radial velocity variations continued also during the V/R-quiet years, suggesting that V/R may not always be a good indicator of global density waves in the disk. The comparison of the polarization after the recovery of the V/R activity shows a slight increase, while the polarization angle has been constant for more than 20 years, placing tight limits on any 3-D precession or warping of the disk. The broad H-band interferometry gives a disk diameter of (1.72 +/- 0.2) mas (equivalent to 15 stellar radii), position angle of the disk (50 +/- 9)degrees and a relatively low disk flattening of 1.66 +/- 0.3. Within the errors the same disk position angle is derived from polarimetric observations and from photocenter shifts across Br gamma. The high-resolution interferometric visibility and phase profiles show a double or even multiple-component structure. A preliminary estimate based on the size of the Br gamma emitting region indicates a large diameter for the disk (tens of stellar radii). Overall, no serious contradiction between the observations and the disk-oscillation model could be construed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background ArtinM is a D-mannose-specific lectin from Artocarpus integrifolia seeds that induces neutrophil migration and activation, degranulation of mast cells, acceleration of wound healing, induction of interleukin-12 production by macrophages and dendritic cells, and protective T helper 1 immune response against Leishmania major, Leishmania amazonensis and Paracoccidioides brasiliensis infections. Considering the important biological properties of ArtinM and its therapeutic applicability, this study was designed to produce high-level expression of active recombinant ArtinM (rArtinM) in Escherichia coli system. Results The ArtinM coding region was inserted in pET29a(+) vector and expressed in E. coli BL21(DE3)-Codon Plus-RP. The conditions for overexpression of soluble ArtinM were optimized testing different parameters: temperatures (20, 25, 30 or 37°C) and shaking speeds (130, 200 or 220 rpm) during induction, concentrations of the induction agent IPTG (0.01-4 mM) and periods of induction (1-19 h). BL21-CodonPlus(DE3)-RP cells induced under the optimized conditions (incubation at 20°C, at a shaking speed of 130 rpm, induction with 0.4 mM IPTG for 19 h) resulted in the accumulation of large amounts of soluble rArtinM. The culture provided 22.4 mg/L of rArtinM, which activity was determined by its one-step purification through affinity chromatography on immobilized D-mannose and glycoarray analysis. Gel filtration showed that rArtinM is monomeric, contrasting with the tetrameric form of the plant native protein (jArtinM). The analysis of intact rArtinM by mass spectrometry revealed a 16,099.5 Da molecular mass, and the peptide mass fingerprint and esi-cid-ms/ms of amino acid sequences of peptides from a tryptic digest covered 41% of the total ArtinM amino acid sequence. In addition, circular dichroism and fluorescence spectroscopy of rArtinM indicated that its global fold comprises β-sheet structure. Conclusions Overall, the optimized process to express rArtinM in E. coli provided high amounts of soluble, correctly folded and active recombinant protein, compatible with large scale production of the lectin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the stacked gravitational lensingmass profile of four high-mass (M 1015M ) galaxy clusters around z≈0.3 from Umetsu et al. to fit density profiles of phenomenological [Navarro– Frenk–White (NFW), Einasto, S´ersic, Stadel, Baltz–Marshall–Oguri (BMO) and Hernquist] and theoretical (non-singular Isothermal Sphere, DARKexp and Kang & He) models of the dark matter distribution. We account for large-scale structure effects, including a two-halo term in the analysis.We find that the BMO model provides the best fit to the data as measured by the reduced χ2. It is followed by the Stadel profile, the generalized NFW profile with a free inner slope and by the Einasto profile. The NFW model provides the best fit if we neglect the two-halo term, in agreement with results from Umetsu et al. Among the theoretical profiles, the DARKexp model with a single form parameter has the best performance, very close to that of the BMO profile. This may indicate a connection between this theoretical model and the phenomenology of dark matter haloes, shedding light on the dynamical basis of empirical profiles which emerge from numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular, the strong biosphere-atmosphere interaction is a key component looking at the exchange processes between vegetation and the atmosphere, focusing on aerosol particles. Two aerosol components are the most visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large effort was done to characterize natural biogenic aerosols that showed detailed organic characterization and optical properties. The biomass burning component in Amazonia is important in term of aerosol and trace gases emissions, with deforestation rates decreasing, from 27,000 Km2 in 2004 to about 5,000 Km2 in 2011. Biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. Long term monitoring of aerosols and trace gases were performed in two sites: a background site in Central Amazonia, 55 Km North of Manaus (called ZF2 ecological reservation) and a monitoring station in Porto Velho, Rondonia state, a site heavily impacted by biomass burning smoke. Several instruments were operated to measured aerosol size distribution, optical properties (absorption and scattering at several wavelengths), composition of organic (OC/EC) and inorganic components among other measurements. AERONET and MODIS measurements from 5 long term sites show a large year-to year variability due to climatic and socio-economic issues. Aerosol optical depths of more than 4 at 550nm was observed frequently over biomass burning areas. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the dry season (Jul-Nov) as compared to the wet season (Dec-Jun). During the wet season in Manaus, aerosol scattering (450 nm) and absorption (637 nm) coefficients averaged, respectively, 14 and 0.9 Mm-1. Angstrom exponents for scattering were lower during the wet season (1.6) in comparison to the dry season (1.9), which is consistent with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic aerosols, predominant in the coarse mode. Single scattering albedo, calculated at 637 nm, did not show a significant seasonal variation, averaging 0.86. In Porto Velho, even in the wet season it was possible to observe an impact from anthropogenic aerosol. Black Carbon was measured at a high 20 ug/m³ in the dry season, showing strong aerosol absorption. This work presents a general description of the aerosol optical properties in Amazonia, both during the Amazonian wet and dry seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network reconfiguration for service restoration (SR) in distribution systems is a complex optimization problem. For large-scale distribution systems, it is computationally hard to find adequate SR plans in real time since the problem is combinatorial and non-linear, involving several constraints and objectives. Two Multi-Objective Evolutionary Algorithms that use Node-Depth Encoding (NDE) have proved able to efficiently generate adequate SR plans for large distribution systems: (i) one of them is the hybridization of the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) with NDE, named NSGA-N; (ii) the other is a Multi-Objective Evolutionary Algorithm based on subpopulation tables that uses NDE, named MEAN. Further challenges are faced now, i.e. the design of SR plans for larger systems as good as those for relatively smaller ones and for multiple faults as good as those for one fault (single fault). In order to tackle both challenges, this paper proposes a method that results from the combination of NSGA-N, MEAN and a new heuristic. Such a heuristic focuses on the application of NDE operators to alarming network zones according to technical constraints. The method generates similar quality SR plans in distribution systems of significantly different sizes (from 3860 to 30,880 buses). Moreover, the number of switching operations required to implement the SR plans generated by the proposed method increases in a moderate way with the number of faults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type Ia supernovae have been successfully used as standardized candles to study the expansion history of the Universe. In the past few years, these studies led to the exciting result of an accelerated expansion caused by the repelling action of some sort of dark energy. This result has been confirmed by measurements of cosmic microwave background radiation, the large-scale structure, and the dynamics of galaxy clusters. The combination of all these experiments points to a “concordance model” of the Universe with flat large-scale geometry and a dominant component of dark energy. However, there are several points related to supernova measurements which need careful analysis in order to doubtlessly establish the validity of the concordance model. As the amount and quality of data increases, the need of controlling possible systematic effects which may bias the results becomes crucial. Also important is the improvement of our knowledge of the physics of supernovae events to assure and possibly refine their calibration as standardized candle. This thesis addresses some of those issues through the quantitative analysis of supernova spectra. The stress is put on a careful treatment of the data and on the definition of spectral measurement methods. The comparison of measurements for a large set of spectra from nearby supernovae is used to study the homogeneity and to search for spectral parameters which may further refine the calibration of the standardized candle. One such parameter is found to reduce the dispersion in the distance estimation of a sample of supernovae to below 6%, a precision which is comparable with the current lightcurve-based calibration, and is obtained in an independent manner. Finally, the comparison of spectral measurements from nearby and distant objects is used to test the possibility of evolution with cosmic time of the intrinsic brightness of type Ia supernovae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordinating activities in a distributed system is an open research topic. Several models have been proposed to achieve this purpose such as message passing, publish/subscribe, workflows or tuple spaces. We have focused on the latter model, trying to overcome some of its disadvantages. In particular we have applied spatial database techniques to tuple spaces in order to increase their performance when handling a large number of tuples. Moreover, we have studied how structured peer to peer approaches can be applied to better distribute tuples on large networks. Using some of these result, we have developed a tuple space implementation for the Globus Toolkit that can be used by Grid applications as a coordination service. The development of such a service has been quite challenging due to the limitations imposed by XML serialization that have heavily influenced its design. Nevertheless, we were able to complete its implementation and use it to implement two different types of test applications: a completely parallelizable one and a plasma simulation that is not completely parallelizable. Using this last application we have compared the performance of our service against MPI. Finally, we have developed and tested a simple workflow in order to show the versatility of our service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]One of the main questions in microbial ecology is to understand what are the processes that structure and govern the species composition of communities. Answering to this question implies the need to detect bacterial species in environmental samples or at least to define ecologically meaningful “units of differentiation”. The dynamics and distribution of different broad taxonomic groups that constitute the bacterioplankton (at the phylum or class level) has been widely studied. The different large groups are known to follow different spatial distributions and seasonal cycles, but important variations also occur at lower levels (i.e. species or ecologically distinct populations). In this thesis we aimed to study some of these aspects for an important group of marine bacteria: the phylum Bacteroidetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollination and seed dispersal are important ecological processes for the regeneration of plant populations and both vectors for gene exchange between plant populations. For my thesis, I studied the pollination ecology of the South African tree Commiphora harveyi (Burseraceae) and compared it with C. guillauminii from Madagascar. Both species have low visitation rates and a low number of pollinating insect species, resulting in a low fruit set. While their pollination ecology is very similar, they differ in their seed dispersal with a low seed dispersal rate in the Malagasy and a high seed dispersal rate in the South African species. This should be reflected in a stronger genetic differentiation among populations in the Malagasy than in the South African species. My results, based on AFLP markers, contradict these expectations, the overall differentiation was lower in the Malagasy (FST = 0.05) than in the South African species (FST = 0.16). However, at a smaller spatial scale (below 3 km), the Malagasy species was genetically more strongly differentiated than the South African species, which was reflected by the high inter-population variance within the sample site (C. guillauminii: 72.2 - 85.5 %; C. harveyi: 8.4 - 14.5 %). This strong differentiation could arise from limited gene flow, which was confirmed by spatial autocorrelation analyses. The shape of the autocorrelogram suggested that gene exchange between individuals occurred only up to 3 km in the Malagasy species, whereas up to 30 km in the South African species. These results on the genetic structure correspond to the expectations based on seed dispersal data. Thus, seed dispersal seems to be a key factor for the genetic structure in plant populations on a local scale.