968 resultados para Lancaster Institution, Southwark, Eng.
Resumo:
The north-south line in Amsterdam is being built underneath the historic centre of the city. Three deep stations are being constructed in deep excavations supported by diaphragm walls. During the excavation for Vijzelgracht station, leakage through the wall resulted in large settlements and damage to historic buildings, which threatened continuation of the project. The authors analysed the cause of the leakage and the damage to the buildings. With the application of robust preventative measures at two of the deep excavations it was possible to continue the project. This paper reports on the cause of the events, the damage to the buildings and the counter-measures taken. It includes lessons learned for the project and for the foundations industry.
Resumo:
The creep effects on sequentially built bridges are analysed by the theory of thermal creep. Two types of analysis are used: time dependent and steady state. The traditional uniform creep analysis is also introduced briefly. Both simplified and parabolic normalising creep-temperature functions are used in the analysis for comparison. Numerical examples are presented, calculated by a computer program based on the theory of thermal creep and using the displacement method. It is concluded that different assumptions within thermal creep can lead to very different results when compared with uniform creep analysis. The steady-state analysis of monolithically built structures can serve as a limit to evaluate total creep effects for both monolithically and sequentially built structures. The importance of the correct selection of the normalising creep-temperature function is demonstrated.
Resumo:
The increasing pressure on material availability, energy prices, as well as emerging environmental legislation is leading manufacturers to adopt solutions to reduce their material and energy consumption as well as their carbon footprint, thereby becoming more sustainable. Ultimately manufacturers could potentially become zero carbon by having zero net energy demand and zero waste across the supply chain. The literature on zero carbon manufacturing and the technologies that underpin it are growing, but there is little available on how a manufacturer undertakes the transition. Additionally, the work in this area is fragmented and clustered around technologies rather than around processes that link the technologies together. There is a need to better understand material, energy, and waste process flows in a manufacturing facility from a holistic viewpoint. With knowledge of the potential flows, design methodologies can be developed to enable zero carbon manufacturing facility creation. This paper explores the challenges faced when attempting to design a zero carbon manufacturing facility. A broad scope is adopted from legislation to technology and from low waste to consuming waste. A generic material, energy, and waste flow model is developed and presented to show the material, energy, and waste inputs and outputs for the manufacturing system and the supporting facility and, importantly, how they can potentially interact. Finally the application of the flow model in industrial applications is demonstrated to select appropriate technologies and configure them in an integrated way. © 2009 IMechE.
Resumo:
This paper reports findings from three research methods used to study customer delight during product evaluation. The results are framed in terms of existing models, high-lighting inadequacies in the assumptions these models make. Implications for product development are proposed in the form of practical strategies for understanding and delighting customers. © IMechE 2007.
Resumo:
Interest is growing around the application of lean techniques to new product introduction (NPI). Although a relatively emergent topic compared with the application of 'lean' within the factory, since 2000 there has been an exponential rise in the literature on this subject. However, much of this work focuses on describing and extolling the virtues of the 'Toyota approach' to design. Therefore, by way of a stock take for the UK, the present authors' research has set out to understand how well lean product design practices have been adopted by leading manufacturers. This has been achieved by carrying out in-depth case studies with three carefully selected manufacturers of complex engineered products. This paper describes these studies, the detailed results and subsequent findings, and concludes that both the awareness and adoption of practices is generally embryonic and far removed from the theory advocated in the literature. © IMechE 2007.
Resumo:
The following discussion is from an Institution of Civil Engineers (ICE) prestige lecture based on the original paper and delivered by the authors at the ICE in London on 24 September 2008.1 The event was chaired by Engineering Sustainability editorial panel chair, Professor Chris Rogers from Birmingham University. It was attended by an audience of 130 people as well as being watched by a similar number over a live web-cast. The web-cast can be accessed from the ICE archive for online viewing at http://scenta. interwise.com/etechb/ OnDemand/TH6509.