628 resultados para Lactobacillus reuteri


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado em Microbiologia Aplicada, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The probiotics, Lactobacillus acidophilus 547, Bifidobacterium bifidum ATCC 1994, and Lactobacillus casei 01, were encapsulated into uncoated calcium alginate beads and the same beads were coated with three types of material, chitosan, sodium alginate, and poly-L-lysine in combination with alginate. The thickness of the alginate beads increased with the addition of coating materials. No differences were detectable in the bead strength by texture analysis or in the thickness of the beads with different types of coating materials by transmission electron microscopy. The survivability of three probiotics in uncoated beads, coated beads, and as free cells (unencapsulated) was conducted in 0.6% bile salt solution and simulated gastric juice (pH 1.55) followed by incubation in simulated intestinal juice with and without 0.6% bile salt. Chitosan-coated alginate beads provided the best protection for L. acidophilus and L. casei in all treatments. However, B. bifidum did not survive the acidic conditions of gastric juice even when encapsulated in coated heads. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30 degrees C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87-0.97 g/g starch associated with 1.5-2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seventy-two lactic acid producing bacterial isolates (excluding streptococci) were cultured from the gastrointestinal tract of six horses. Two of the horses were orally dosed with raftilose to induce lactic acidosis and laminitis while the remaining four were maintained on a roughage diet. Near complete 16S rDNA was amplified by PCR from the genomic DNA of each isolate. Following RFLP analysis with the restriction enzymes MboI, HhaI and HinfI, the PCR products from the IS isolates that produced L- and/or D-lactate were subsequently cloned and sequenced. DNA sequence analysis indicated that the majority of the isolates were closely related to species within the genus Lactobacillus, including Lactobacillus salivarius, Lactobacillus mucosae and Lactobacillus delbrueckii. Four isolates were closely related to Mitsuokella jalaludinii. Lactic acid producing bacteria (LAB) from the equine gastrointestinal tract was dominated by representatives from the genus Lactobacillus, but also included D-lactate-producing bacteria closely related to M. jalaludinii. Identification and characterization of LAB from the equine gastrointestinal tract should contribute to our understanding and management of fermentative acidosis, ulceration of the stomach and laminitis. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Folates and its derivatives occur as polyglutamates in nature. The multiplicity of forms and the generally low levels in foods makes quantitative analysis of folate a difficult task. The assay of folates from foods generally involves three steps: liberation of folates from the cellular matrix; deconjugation from the polyglutamate to the mono and di-glutamate forms; and the detection of the biological activity or chemical concentration of the resulting folates. The detection methods used are the microbiological assay relying on the turbidimetric bacterial growth of Lactobacillus rhamnosus which is by far the most commonly used method; the HPLC and LC/MS techniques and bio-specific procedures. This review attempts to describe the methods along with the merits and demerits of using each of these methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Survival of the microencapsulated probiotics, Lactobacillus acidophilus 547, Bifidobacterium bifidum ATCC 1994, and Lactobacillus casei 01, in stirred yoghurt from UHT- and conventionally treated milk during low temperature storage was investigated. The probiotic cells both as free cells and microencapsulated cells (in alginate beads coated with chitosan) were added into 20 g/100 g total solids stirred yoghurt from UHT-treated milk and 16 g/100 g total solids yoghurt from conventionally treated milk after 3.5 h of fermentation. The products were kept at 4 degrees C for 4 weeks. The survival of encapsulated probiotic bacteria was higher than free cells by approximately 1 log cycle. The number of probiotic bacteria was maintained above the recommended therapeutic minimum (10(7) cfu g(-1)) throughout the storage except for R bifidum. The viabilities of probiotic bacteria in yoghurts from both UHT- and conventionally treated milks were not significantly (P > 0.05) different. (c) 2004 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicobacter pylori colonizes the human stomach, where it causes gastritis that may develop into peptic ulcer disease or cancer when left untreated. Neisseria gonorrhoeae colonizes the urogenital tract and causes the sexually transmitted disease gonorrhea. In contrast, Lactobacillus species are part of the human microbiota, which is the resident microbial community, and are considered to be beneficial for health. The first host cell types that bacteria encounter when they enter the body are epithelial cells, which form the border between the inside and the outside, and macrophages, which are immune cells that engulf unwanted material.       The focus of this thesis has been the interaction between the host and bacteria, aiming to increase our knowledge of the molecular mechanisms that underlie the host responses and their effects on bacterial pathogenicity. Understanding the interactions between bacteria and the host will hopefully enable the development of new strategies for the treatment of infectious disease. In paper I, we investigated the effect of N. gonorrhoeae on the growth factor amphiregulin in cervical epithelial cells and found that the processing and release of amphiregulin changes upon infection. In paper II, we examined the expression of the transcription factor early growth response-1 (EGR1) in epithelial cells during bacterial colonization. We demonstrated that EGR1 is rapidly upregulated by many different bacteria. This upregulation is independent of the pathogenicity, Gram-staining type and level of adherence of the bacteria, but generally requires viable bacteria and contact with the host cell. The induction of EGR1 is mediated primarily by signaling through EGFR, ERK1/2 and β1-integrins. In paper III, we described the interactions of the uncharacterized protein JHP0290, which is secreted by H. pylori, with host cells. JHP0290 is able to bind to several cell types and induces apoptosis and TNF release in macrophages. For both of these responses, signaling through Src family kinases and ERK is essential. Apoptosis is partially mediated by TNF release. Finally, in paper IV, we showed that certain Lactobacillus strains can reduce the colonization of H. pylori on gastric epithelial cells. Lactobacilli decrease the gene expression of SabA and thereby inhibit the binding mediated by this adhesin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbiological, physical and chemical changes which occur instored, harvested sugarcane were studied in Jamaica and the United Kingdom.The degree of deterioration was proportional to time of storage, and wasrevealed by a statistically significant reduction in sucrose content.Other symptoms included a fall in pH, and increases in reducing sugars,dextran, viscosity, and microbial count. Cut cane was universally infectedwith Leuconostoc mesenteroides, which reached a maximum count of 107 to 108organisms per ml. juice within. 3 to 4 days of harvest. Counts of othermicroorganisms were generally insignificant, except for occasional lactobacilli.A new dextran-forming species was named Lactobacillus confusus.Microorganisms isolated from deteriorated cane were screened for theirability to cause deterioration of a sterile, synthetic cane juice. L. mesenteroides strains were the most deteriogenic, but attempts toreproduce the symptoms of "sour" cane by inoculation of this organism intocut cane were only partially successful. L. mesenteroides was present in the soil and the epiphytic flora of the stalk. The principal vector of infection appeared to be the cutters' machete, especially in wet weather. Cane harvested by a chopper machine deteriorated more rapidly than hand-cut whole-stalks. Economic losses due to deterioration of harvested cane were estimated to be 9.2% of the initial recoverable sugar for the 1969 crop at Frome Estate, Jamaica. Dextran content was a useful indicator of cane biodeterioration. The dextran content of mill juices was correlated with rainfall, and significant correlations were obtained between dextran content and viscosity of mill syrups and the amount of sugar lost in final molasses; it also caused the formation of elongated crystals. Attempts to control sour cane by chemical and physical methods were unsuccessful, and it was concluded that the only solution is to mill cane within 24 hours of harvest. A novel method for removal of dextran from mill juices by enzymic treatment with dextranase was developed and patented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os subprodutos da pesca têm recebido maior atenção devido à perceção dos seus impactos negativos na economia e no ambiente. Contudo, os subprodutos de crustáceos contêm vários compostos que podem ser usados como fonte de biopolímeros, como por exemplo a quitina, tendo esta uma grande variedade de aplicações biotecnológicas. O caranguejo Polybius henslowii, é um recurso marinho extremamente abundante na costa oeste Portuguesa durante os meses de Verão, não sendo contudo aproveitada para fins comerciais. Com este estudo procura-se assim contribuir para a valorização económica deste recurso, como fonte de matéria-prima para a extração de polímeros visando aplicações biotecnológicos. Para avaliar o seu potencial, a quitina foi extraída e quitosano produzido, a partir de distintas partes do corpo de Polybius henslowii: pereópodes e carapaça. O quitosano obtido, serviu, por sua vez, de matéria-prima para a produção de quitosano solúvel em água (WSC) e oligomeros de quitosano (COS), tendo todas as amostras sido caracterizadas e testadas quanto às suas propriedades antibacteriana, antifúngica e antioxidante, redução do radical 1, 1-Difenil-2-picrilhidrazil (DPPH). A caracterização das amostras de quitosano obtidas a partir de ambos os segmentos, demonstraram diferenças quanto ao seu rendimento, peso molecular e viscosidade. Os oligomeros de quitosano (COS) revelaram atividade antibacteriana contra todas as bactérias Gram-negativas testadas e a Gram-positiva, Lactobacillus planctarum (ATCC8014). COS mostraram melhores resultados na concentração mínima inibitória do que WSC contra todos os microrganismos testados, com maior inibição de crescimento demonstrada para Escherichia coli (ATCC10536) entre as concentrações de 0.125-0.0625 mg/mL. Os oligomeros demonstraram também maior atividade na redução do radical DPPH e na atividade antifúngica contra quatro espécies de fungo. A maior capacidade de redução foi obtida pelas amostras de COS obtidos a partir de pereópodes e carapaças (40%) com 1mg/mL de amostra.A capacidade de inibição do crescimento das espécies de fungos testados provou ser maior também para as amostras de oligomeros, do que para o quitosano solúvel em água. A maior atividade observada foi conseguida pelas amostras de pCOS (oligomeros de quitosano de pereópodes) e cCOS (oligomeros de quitosano de carapaças) para Cryphonectria parasitica (DSMZ 62626) com 84.5±3.14% e 85.6±2.27%, respetivamente. Tendo por base os resultados obtidos, é possível concluir pelas características bioquímicas e propriedades biológicas deste recurso marinho não tradicional, Polybius henslowii, suportam a sua utilização por indústrias biotecnológicas, promovendo assim a sua valorização económica. A exploração desta espécie vítima de captura acidental pode também aumentar desta forma a competitividade da atividade pesqueira através da reorientação e diversificação das espécies alvo, com potencial impacto no desenvolvimento sustentável nas comunidades costeiras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dietary intake of sodium chloride has increased considerably over the last few decades due to changes in the human diet. This higher intake has been linked to a number of diseases including hypertension and other cardiovascular diseases. Numerous international health agencies, as well as the food industry, have now recommended a salt intake level of 5-6 g daily, approximately half of the average current daily intake level. Cereal products, and in particular bread, are a major source of salt in the Western diet. Therefore, any reduction in the level of salt in bread could have a major impact on global health. However, salt is a critical ingredient in bread production, and its reduction can have a deleterious effect on the production process as well as on the final bread quality characteristics such as shelf-life, bread volume and sensory characteristics, all deviating from the bakers’ and consumers’ expectations. This work addresses the feasibility of NaCl reduction in wheat bread focusing on options to compensate NaCl with the use of functional sourdoughs. Three strains were used for the application of low-salt bread; L. amylovorus DSM19280, W. cibaria MG1 and L. reuteri FF2hh2. The multifunctional strain L. reuteri FF2hh2 was tested the first time and its application could be demonstrated successfully. The functionalities were based on the production of exopolysaccharides as well as the production of antifungal compounds. While the exopolysaccharides, mainly high molecular dextrans, positively influenced mainly bread loaf volume, crumb structure and staling rate, the strains producing antifungal compounds prolonged the microbial shelf life significantly and compensated the lack of salt. The impact on the sensory characteristics of bread were evaluated by descriptive sensory evaluation. The increase in surface area as well as the presence of organic acids impacted significantly on the flavour profile of the sourdough bread samples. The flavour attribute “salt” could be enhanced by sourdough addition and increased the salty perception. Furthermore, a trained sensory panel evaluated for the first time the impact of yeast activity, based on different salt and yeast concentrations, on the volatile aroma profile of bread crumb samples. The analytical measurements using high resolution gas chromatography and proton-transfer-reaction mass spectrometry (PTR-MS) resulted in significantly different results based on different yeast activities. Nevertheless, the extent of the result could not be recognised by the sensory panel analysing the odour profile of the bread crumb samples. Hence, the consumer cannot recognised low-salt bread by its odour. The use of sourdough is a natural option to overcome the broad range of technological issues caused by salt reduction and also a more popular alternative compared to existing chemical salt replacers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High throughput next generation sequencing, together with advanced molecular methods, has considerably enhanced the field of food microbiology. By overcoming biases associated with culture dependant approaches, it has become possible to achieve novel insights into the nature of food-borne microbial communities. In this thesis, several different sequencing-based approaches were applied with a view to better understanding microbe associated quality defects in cheese. Initially, a literature review provides an overview of microbe-associated cheese quality defects as well as molecular methods for profiling complex microbial communities. Following this, 16S rRNA sequencing revealed temporal and spatial differences in microbial composition due to the time during the production day that specific commercial cheeses were manufactured. A novel Ion PGM sequencing approach, focusing on decarboxylase genes rather than 16S rRNA genes, was then successfully employed to profile the biogenic amine producing cohort of a series of artisanal cheeses. Investigations into the phenomenon of cheese pinking formed the basis of a joint 16S rRNA and whole genome shotgun sequencing approach, leading to the identification of Thermus species and, more specifically, the pathway involved in production of lycopene, a red coloured carotenoid. Finally, using a more traditional approach, the effect of addition of a facultatively heterofermentative Lactobacillus (Lactobacillus casei) to a Swiss-type cheese, in which starter activity was compromised, was investigated from the perspective of its ability to promote gas defects and irregular eye formation. X-ray computed tomography was used to visualise, using a non-destructive method, the consequences of the undesirable gas formation that resulted. Ultimately this thesis has demonstrated that the application of molecular techniques, such as next generation sequencing, can provide a detailed insight into defect-causing microbial populations present and thereby may underpin approaches to optimise the quality and consistency of a wide variety of cheeses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty-six 12-month-old hill hoggets were used in a 2 genotype (18 Scottish Blackface vs. 18 Swaledale×Scottish Blackface)×3 diet (fresh vs. ensiled vs. pelleted ryegrass) factorial design experiment to evaluate the effects of hogget genotype and forage type on enteric methane (CH4) emissions and nitrogen (N) utilisation. The hoggets were offered 3 diets ad libitum with no concentrate supplementation in a single period study with 6 hoggets for each of the 6 genotype×diet combinations (n=6). Fresh ryegrass was harvested daily in the morning. Pelleted ryegrass was sourced from a commercial supplier (Aylescott Driers & Feeds, Burrington, UK) and the ryegrass silage was ensiled with Ecosyl (Lactobacillus plantarum, Volac International Limited, Hertfordshire, UK) as an additive. The hoggets were housed in individual pens for at least 14 d before being transferred to individual respiration chambers for a further 4 d with feed intake, faeces and urine outputs and CH4 emissions measured. There was no significant interaction between genotype and forage type on any parameter evaluated. Sheep offered pelleted grass had greater feed intake (e.g. DM, energy and N) but less energy and nutrient apparent digestibility (e.g. DM, N and neutral detergent fibre (NDF)) than those given fresh grass or grass silage (P<0.001). Feeding pelleted grass, rather than fresh grass or grass silage, reduced enteric CH4 emissions as a proportion of DM intake and gross energy (GE) intake (P<0.01). Sheep offered fresh grass had a significantly lower acid detergent fibre (ADF) apparent digestibility, and CH4 energy output (CH4-E) as a proportion of GE intake than those offered grass silage (P<0.001). There was no significant difference, in CH4 emission rate or N utilisation efficiency when compared between Scottish Blackface and Swaledale × Scottish Blackface. Linear and multiple regression techniques were used to develop relationships between CH4 emissions or N excretion and dietary and animal variables using data from sheep offered fresh ryegrass and grass silage. The equation relating CH4-E (MJ/d) to GE intake (GEI, MJ/d), energy apparent digestibility (DE/GE) and metabolisability (ME/GE) resulted in a high r2 (CH4-E=0.074 GEI+9.2 DE/GE−10.2 ME/GE−0.37, r2=0.93). N intake (NI) was the best predictor for manure N excretion (Manure N=0.66 NI+0.96, r2=0.85). The use of these relationships can potentially improve the precision and decrease the uncertainty in predicting CH4 emissions and N excretion for sheep production systems managed under the current feeding conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le fermentazioni spontanee nei salami sono un fenomeno molto complesso in cui si assiste ad una successione di diverse popolazioni microbiche (micrococchi, stafilococchi e batteri lattici), avente ognuna un ruolo importante nell’ottenimento delle qualità desiderate del prodotto finale. Questo susseguirsi vorticoso di popolazioni microbiche nelle fermentazioni spontanee viene ormai regolamentato dall’uso di colture starter che, aggiunte in quantità idonee immediatamente prima dell’insaccamento, contribuiscono in maniera essenziale ad un rapido, corretto (e soprattutto sicuro) processo di fermentazione prima e di disidratazione poi. Poiché però l’impiego di starter segue spesso protocolli indifferenziati, è importante la selezione di colture starter “taylor made”, in grado di differenziare i prodotti in maniera riconoscibile con l’apporto di specifici tratti organolettici e sensoriali. Dunque, con questo elaborato di tesi si è voluto procedere alla raccolta di potenziali colture starter provenienti da diversi salami della tradizione mediterranea (salame di tipo bresciano, romagnolo e lucano), fermentati spontaneamente. Questi prodotti sono stati dapprima caratterizzati per quanto riguarda le loro caratteristiche microbiologiche, chimico-fisiche, profilo aromatico e il loro contenuto in ammine biogene. Successivamente, in particolare per il salame di tipo bresciano, sono stati isolati ceppi di interesse dalla popolazione lattica, poi identificati e testati per alcune caratteristiche di interesse tecnologico (capacità di produrre ammine biogene e profilo aromatico). I ceppi riscontrati, appartenenti alle specie Lactobacillus sakei e Lactobacillus curvatus, hanno mostrato una notevole biodiversità, soprattutto per quanto riguarda la produzione di molecole aromatiche, e quindi una notevole capacità, anche nell’ambito della stessa specie, di modulare la produzione di composti molto importanti dal punto di vista organolettico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal obesity has been shown to increase the risk for adverse reproductive health outcomes such as gestational diabetes, hypertension, and preeclampsia. Moreover, several studies have indicated that overnutrition and maternal obesity adversely program the development of offspring by predisposing them to obesity and other chronic diseases later in life. The exact molecular mechanisms leading to developmental programming are not known, but it has recently been suggested that obesity-related low-grade inflammation, gut microbiota and epigenetic gene regulation (in particularly DNA methylation) participate in the developmental programming phenomenon. The aim of this thesis was to evaluate the effect of diet, dietary counseling and probiotic intervention during pregnancy in endorsing favorable developmental programming. The study population consisted of 256 mother-child pairs participating in a prospective, double-blinded dietary counselling and probiotic intervention (Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12) NAMI (Nutrition, Allergy, Mucosal immunology and Intestinal microbiota) study. Further overweight women were recruited from maternal welfare clinics in the area of Southwest Finland and from the prenatal outpatient clinic at Turku University Hospital. Dietary counseling was aimed to modify women’s dietary intake to comply with the recommended intake for pregnant women. Specifically, counseling aimed to affect the type of fat consumed and to increase the amount of fiber in the women’s diets. Leptin concentration was used as a marker for obesity-related low-grade inflammation, antioxidant vitamin status as an efficiency marker for dietary counselling and epigenetic DNA methylation of obesity related genes as a marker for probiotics influence. Results revealed that dietary intake may modify obesity-associated low-grade inflammation as measured by serum leptin concentration. Specifically, dietary fiber intake may lower leptin concentration in women, whereas the intakes of saturated fatty acids and sucrose have an opposite effect. Neither dietary counselling nor probiotic intervention modified leptin concentration in women, but probiotics tended to increase children’s leptin concentration. Dietary counseling was an efficient tool for improving antioxidant vitamin intake in women, which was reflected in the breast milk vitamin concentration. Probiotic intervention affected DNA methylation of dozens of obesity and weight gain related genes both in women and their children. Altogether these results indicate that dietary components, dietary counseling and probiotic supplementation during pregnancy may modify the intrauterine environment towards favorable developmental programming.