991 resultados para LUMINESCENCE QUANTUM YIELD


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that stochastic electrodynamics and quantum mechanics give quantitatively different predictions for the quantum nondemolition (QND) correlations in travelling wave second harmonic generation. Using phase space methods and stochastic integration, we calculate correlations in both the positive-P and truncated Wigner representations, the latter being equivalent to the semi-classical theory of stochastic electrodynamics. We show that the semiclassical results are different in the regions where the system performs best in relation to the QND criteria, and that they significantly overestimate the performance in these regions. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnitude of genotype-by-management (G x M) interactions for grain yield and grain protein concentration was examined in a multi-environment trial (MET) involving a diverse set of 272 advanced breeding lines from the Queensland wheat breeding program. The MET was structured as a series of management-regimes imposed at 3 sites for 2 years. The management-regimes were generated at each site-year as separate trials in which planting time, N fertiliser application rate, cropping history, and irrigation were manipulated. irrigation was used to simulate different rainfall regimes. From the combined analysis of variance, the G x M interaction variance components were found to be the largest source of G x E interaction variation for both grain yield (0.117 +/- 0.005 t(2) ha(-2); 49% of total G x E 0.238 +/- 0.028 t(2) ha(-2)) and grain protein concentration (0.445 +/- 0.020%(2); 82% of total G x E 0.546 +/- 0.057%(2)), and in both cases this source of variation was larger than the genotypic variance component (grain yield 0.068 +/- 0.014 t(2) ha(-2) and grain protein 0.203 +/- 0.026%(2)). The genotypic correlation between the traits varied considerably with management-regime, ranging from -0.98 to -0.31, with an estimate of 0.0 for one trial. Pattern analysis identified advanced breeding lines with improved grain yield and grain protein concentration relative to the cultivars Hartog, Sunco and Meteor. It is likely that a large component of the previously documented G x E interactions for grain yield of wheat in the northern grains region are in part a result of G x M interactions. The implications of the strong influence of G x M interactions for the conduct of wheat breeding METs in the northern region are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The material in genebanks includes valuable traditional varieties and landraces, non-domesticated species, advanced and obsolete cultivars, breeding lines and genetic stock. It is the wide variety of potentially useful genetic diversity that makes collections valuable. While most of the yield increases to date have resulted from manipulation of a few major traits (such as height, photoperiodism, and vernalization), meeting future demand for increased yields will require exploitation of novel genetic resources. Many traits have been reported to have potential to enhance yield, and high expression of these can be found in germplasm collections. To boost yield in irrigated situations, spike fertility must be improved simultaneously with photosynthetic capacity. CIMMYT's Wheat Genetic Resources program has identified a source of multi-ovary florets, with up to 6 kernels per floret. Lines from landrace collections have been identified that have very high chlorophyll concentration, which may increase leaf photosynthetic rate. High chlorophyll concentration and high stomatal conductance are associated with heat tolerance. Recent studies, through augmented use of seed multiplication nurseries, identified high expression of these traits in bank accessions, and both traits were heritable. Searches are underway for drought tolerance traits related to remobilization of stem fructans, awn photosynthesis, osmotic adjustment, and pubescence. Genetic diversity from wild relatives through the production of synthetic wheats has produced novel genetic diversity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By exhibiting a violation of a novel form of the Bell-CHSH inequality, Żukowski has recently established that the quantum correlations exploited in the standard perfect teleportation protocol cannot be recovered by any local hidden variables model. In the case of imperfect teleportation, we show that a violation of a generalized form of Żukowski's teleportation inequality can only occur if the channel state, considered by itself, already violates a Bell-CHSH inequality. On the other hand, the fact that the channel state violates a Bell-CHSH inequality is not sufficient to imply a violation of Żukowski's teleportation inequality (or any of its generalizations). The implication does hold, however, if the fidelity of the teleportation exceeds ≈ 0.90. © 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the physical significance of fidelity as a measure of similarity for Gaussian states by drawing a comparison with its classical counterpart. We find that the relationship between these classical and quantum fidelities is not straightforward, and in general does not seem to provide insight into the physical significance of quantum fidelity. To avoid this ambiguity we propose that the efficacy of quantum information protocols be characterized by determining their transfer function and then calculating the fidelity achievable for a hypothetical pure reference input state. (c) 2007 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the quantum dynamics of the emission of multimodal polarized light in light emitting devices (LED) due to spin polarized carriers injection. We present the equations for photon number and carrier numbers, and calculate the polarisation degree of the light generated by LED. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a systematic theory of critical quantum fluctuations in the driven parametric oscillator. Our analytic results agree well with stochastic numerical simulations. We also compare the results obtained in the positive-P representation, as a fully quantum-mechanical calculation, with the truncated Wigner phase-space equation, also known as the semiclassical theory. We show when these results agree and differ in calculations taken beyond the linearized approximation. We find that the optimal broadband noise reduction occurs just above threshold. In this region where there are large quantum fluctuations in the conjugate variance and macroscopic quantum superposition states might be expected, we find that the quantum predictions correspond very closely to the semiclassical theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less magical, and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature real-world problem relating to the lengths of paths in a network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate the quantum optics of a double-ended optical cavity. We show that an impedance matched, far-detuned cavity can be used to separate the positive and negative sidebands of a field. The 'missing' sideband will be replaced by the equivalent sideband incident on the cavity from the other direction. This technique can be used to convert the quantum correlations between the sidebands of the incident fields into quantum correlations between the two spatially distinct output fields. We show that, under certain experimental conditions, the fields emerging from the cavity will display entanglement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some applications of high-efficiency quantum interrogation (interaction-free measurement) for the creation of entangled states of separate atoms and of separate photons. The quantum interrogation of a quantum object in a superposition of object-in and object-out leaves the object and probe in an entangled state. The probe can then be further entangled with other objects in subsequent quantum interrogations. By then projecting out those cases in which the probe is left in a particular final state, the quantum objects can themselves be left in various entangled states. In this way, we show how to generate two-, three-, and higher-qubit entanglement between atoms and between photons. The effect of finite efficiency for the quantum interrogation is delineated for the various schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.