981 resultados para LATE-HOLOCENE
Resumo:
Barrow, the northernmost point in Alaska, is one of the most intensively studied areas in the Arctic. However, paleoenvironmental evidence is limited for northern Alaska for the Lateglacial-Holocene transition. For a regional paleoenvironmental reconstruction, we investigated a permafrost ice-wedge tunnel near Barrow, Alaska. The studied site was first excavated in the early 1960s and intercepts a buried ice-wedge system at 3-6 m depth below the surface. A multi-methodological approach was applied to this buried ice-wedge system and the enclosing sediments, which in their combination, give new insight into the Late Quaternary environmental and climate history. Results of geochronological, sedimentological, cryolithological, paleoecological, isotope geochemical and microbiological studies reflect different stages of mid to late Wisconsin (MW to LW), Allerod (AD), Younger Dryas (YD), Preboreal (PB), and Late Holocene paleoenvironmental evolution. The LW age of the site is indicated by AMS dates in the surrounding sediments of 21.7 kyr BP at the lateral contact of the ice-wedge system as well as 39.5 kyr BP below the ice-wedge system. It is only recently that in this region, stable isotope techniques have been employed, i.e. to characterize different types of ground ice. The stable isotope record (oxygen: d18O; hydrogen: dD) of two intersecting ice wedges suggests different phases of the northern Alaskan climate history from AD to PB, with radiocarbon dates from 12.4 to 9.9 kyr BP (ranging from 14.8 to 10.6 kyr cal BP). Stable isotope geochemistry of ice wedges reveals winter temperature variations of the Lateglacial-Holocene transition including a prominent YD cold period, clearly separated from the warmer AD and PB phases. YD is only weakly developed in summer temperature indicators (such as pollen) for the northern Alaska area, and by consequence, the YD cold stadial was here especially related to the winter season. This highlights that the combination of winter and summer indicators comprehensively describes the seasonality of climate-relevant processes in discrete time intervals. The stable isotope record for the Barrow buried ice-wedge system documents for the first time winter climate change at the Lateglacial-Holocene transition continuously and at relatively high (likely centennial) resolution.
Resumo:
A 20 kyr long sediment sequence from the Congo deep sea fan (core GeoB 6518-1), one of the world's largest deep sea river fans, has been analysed for bulk and molecular proxies in order to reconstruct the marine, soil and plant organic carbon (OC) contributions to these sediments since the last glacial maximum. The bulk proxies applied, C/N ratio and d13Corg, ranged from 10 to 12.5 and from -24.5 to -21 per mill VPDB, respectively. As molecular proxies, concentrations of marine derived alkenones and terrestrial derived odd-numbered n-alkanes were used, which varied between 0.2 and 4 µg/g dry weight sediment. In addition, the branched vs. isoprenoid tetraether (BIT) index, a proxy for soil organic matter input, was used, which varied from 0.3 to 0.5 in this core. Application of binary mixing models, based on the different individual proxies, showed estimates for terrestrial OC input varying by up to 50% due to the heterogeneous nature of the OC. Application of a three end-member mixing model using the d13Corg content, the C/N ratio and the BIT index, enabled the distinction of soil and plant organic matter as separate contributors to the sedimentary OC pool. The results show that marine OC accounts for 20% to 40% of the total OC present in the deep sea fan sediments over the last 20 kyr and that soil OC accounts for about half (45% on average) of the OC present. This suggests that soil OC represents the majority of the terrestrial OC delivered to the fan sediments. Accumulation rates of the plant and soil OC fractions over the last 20 kyr varied by a factor of up to 5, and are strongly related to sediment accumulation rates. They showed an increase starting at ca. 17 kyr BP, a decline during the Younger Dryas, peak values during the early Holocene and lower values in the late Holocene. This pattern matches with reconstructions of past central African humidity and Congo River discharge from the same core and revealed that central African precipitation patterns exert a dominant control on terrestrial OC deposition in the Congo deep sea fan. Marine OC accumulation rates are only weakly related to sediment accumulation rates and vary only little over time compared to the terrigenous fractions. These variations are likely a result of enhanced preservation during times of higher sedimentation rates and of relative small fluctuations in primary production due to wind-driven upwelling.
Resumo:
The rock mass of fluvial and fluvioglacial deposits of the Late Holocene has been studied at the altitude of 1830 m a.s.l. using the palynologic, carpologic, geomorphologic, and geochronologic methods. It was ascertained that in the mid-Subatlantic period the area of the present-day beech elfin woodland was occupied by a belt of alpine meadows. Thus, the lower border of alpine meadows ran 370-400 m lower than the recent level, pointing to a rather significant cooling of the climate that occurred from ca 2nd cent. A.D.
Resumo:
A new surface sediment sample set gained in the western Barents Sea by the MAREANO program has been analysed for basic clay mineral assemblages. Distribution maps including additional samples from earlier German research cruises to and off Svalbard are compiled. Some trends in the clay mineral assemblages are related to the sub-Barents Sea geology because the Quaternary sediment cover is rather thin. Additionally, land masses like Svalbard and northern Scandinavia dominate the clay mineral signal with their erosional products. Dense bottom water, very often of brine origin, that flows within deep troughs, such as the Storfjorden or Bear Island Trough, transport the clay mineral signal from their origin to the Norwegian-Greenland Sea.
Resumo:
Climatic and oceanographic changes, as occurring at a glacial-interglacial scale, may alter the environmental conditions needed for the development of prolific cold-water coral reefs and mounds. Studies constraining the temporal distribution of cold-water corals in the NE Atlantic suggested the cyclic changes of the Atlantic Meridional Overturning Circulation as the main driver for the development and dispersal of cold-water coral ecosystems. However, conclusions were hindered by lack of data from the NW Atlantic. Aiming to overcome this lack of data, the temporal occurrence of cold-water corals in the Cape Lookout area along the southeastern US margin was explored by U-series dating. Furthermore, the local influence of the regional water masses, namely the Gulf Stream, on cold-water coral proliferation and occurrence since the Last Glacial Maximum was examined. Results suggest that the occurrence of cold-water corals in the Cape Lookout area is restricted to interglacial periods, with corals being present during the last ~7 kyr and also during the Eemian (~125 ka). The reconstructed local environmental conditions suggest an offshore displacement of the Gulf Stream and increased influence from the Mid-Atlantic Bight shelf waters during the last glacial period. During the deglacial sea level rise, the Gulf Stream moved coastward providing present-day-like conditions to the surface waters. Nevertheless, present-day conditions at the ocean sea floor were not established before 7.5 cal ka BP once the ultimate demise of the Laurentide ice-sheet caused the final sea level rise and the displacement of the Gulf Stream to its present location. Occasional presence of the Gulf Stream over the site during the Mid- to Late Holocene coincides with enhanced bottom current strength and a slightly higher bottom water temperature, which are environmental conditions that are favorable for cold-water coral growth.
Resumo:
We provide a new multivariate calibration-function based on South Atlantic modern assemblages of planktonic foraminifera and atlas water column parameters from the Antarctic Circumpolar Current to the Subtropical Gyre and tropical warm waters (i.e., 60°S to 0°S). Therefore, we used a dataset with the abundance pattern of 35 taxonomic groups of planktonic foraminifera in 141 surface sediment samples. Five factors were taken into consideration for the analysis, which account for 93% of the total variance of the original data representing the regional main oceanographic fronts. The new calibration-function F141-35-5 enables the reconstruction of Late Quaternary summer and winter sea-surface temperatures with a statistical error of ~0.5°C. Our function was verified by its application to a sediment core extracted from the western South Atlantic. The downcore reconstruction shows negative anomalies in sea-surface temperatures during the early-mid Holocene and temperatures within the range of modern values during the late Holocene. This pattern is consistent with available reconstructions.
Resumo:
Detrending natural and anthropogenic components of climate variability is arguably an issue of utmost importance to society. To accomplish this issue, one must rely on a comprehensive understanding of the natural variability of the climate system on a regional level. Here we explore how different proxies (e.g., stalagmite oxygen isotopic composition, pollen percentages, bulk sediment elemental ratios) record Holocene precipitation variability over southeastern South America. We found a general good agreement between the different records both on orbital and centennial time-scales. Dry mid Holocene, and wet late Holocene, Younger Dryas and a period between ~9.4 and 8.12 cal kyr BP seem to be pervasive features. Moreover, we show that proxy-specific sensitivity can greatly improve past precipitation reconstructions.
Resumo:
This paper discusses some aspects of hunter-gatherer spatial organization in southern South Patagonia, in later times to 10,000 cal yr BP. Various methods of spatial analysis, elaborated with a Geographic Information System (GIS) were applied to the distributional pattern of archaeological sites with radiocarbon dates. The shift in the distributional pattern of chronological information was assessed in conjunction with other lines of evidence within a biogeographic framework. Accordingly, the varying degrees of occupation and integration of coastal and interior spaces in human spatial organization are explained in association with the adaptive strategies hunter-gatherers have used over time. Both are part of the same human response to changes in risk and uncertainty variability in the region in terms of resource availability and environmental dynamics.
Resumo:
IEECAS SKLLQG