956 resultados para Knights of Malta.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemistry of homoleptic substituted phthalocyaninato rare earth double-decker complexes M(TBPc)2 and M(OOPc)2 [M = Y, La...Lu except Pm; H2TBPc = 3(4),12(13),21(22),30(31)-tetra-tert-butylphthalocyanine, H2OOPc = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] has been comparatively studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). Two quasi-reversible one-electron oxidations and three or four quasi-reversible one-electron reductions have been revealed for these neutral double-deckers of two series of substituted complexes, respectively. For comparison, unsubstituted bis(phthalocyaninato) rare earth analogues M(Pc)2 (M = Y, La...Lu except Pm; H2Pc = phthalocyanine) have also been electrochemically investigated. Two quasi-reversible one-electron oxidations and up to five quasi-reversible one-electron reductions have been revealed for these neutral double-decker compounds. The three bis(phthalocyaninato)cerium compounds display one cerium-centered redox wave between the first ligand-based oxidation and reduction. The half-wave potentials of the first and second oxidations and first reduction for double-deckers of the tervalent rare earths depend on the size of the metal center. The difference between the redox potentials of the second and third reductions for MIII(Pc)2, which represents the potential difference between the first oxidation and first reduction of [MIII(Pc)2]−, lies in the range 1.08−1.37 V and also gradually diminishes along with the lanthanide contraction, indicating enhanced π−π interactions in the double-deckers connected by the smaller, lanthanides. This corresponds well with the red-shift of the lowest energy band observed in the electronic absorption spectra of reduced double-decker [MIII(Pc′)2]− (Pc′ = Pc, TBPc, OOPc).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared (IR) spectroscopic data for a series of eleven heteroleptic bis(phthalocyaninato) rare earth complexes MIII(Pc)[Pc(α-OC5H11)4] (M = Sm–Lu, Y) [H2Pc = unsubstituted phthalocyanine, H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected with 2 cm−1 resolution. Raman spectroscopic properties in the range of 500–1800 cm−1 for these double-decker molecules have also been comparatively studied using laser excitation sources emitting at 632.8 and 785 nm. Both the IR and Raman spectra for M(Pc)[Pc(α-OC5H11)4] are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds, namely C4. For this series, the IR Pc√− marker band appears as an intense absorption at 1309–1317 cm−1, attributed to the pyrrole stretching. With laser excitation at 632.8 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. In contrast, when excited with laser radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane deformations between 500 and 1000 cm−1 for M(Pc)[Pc(α-OC5H11)4] intensify to become the strongest scatterings. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series. The assignments of the vibrational bands for these compounds have been made and discussed in relation to other unsubstituted and substituted bis(phthalocyaninato) rare earth analogues, such as M(Pc)2 and M(OOPc)2 [H2OOPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine].