942 resultados para Joints nonlinear analysis
Resumo:
The amplitude modulation of ion-acoustic waves IS investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrodinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (mu), for a given value of the hot-to-cold electron density ratio (nu): favors instability. The role of the ion temperature is also discussed. In the limiting case nu = 0 (or nu -> infinity). which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.
Resumo:
The propagation of small amplitude stationary profile nonlinear electrostatic excitations in a pair plasma is investigated, mainly drawing inspiration from experiments on fullerene pair-ion plasmas. Two distinct pair ion species are considered of opposite polarity and same mass, in addition to a massive charged background species, which is assumed to be stationary, given the frequency scale of interest. In the pair-ion context, the third species is thought of as a background defect (e.g. charged dust) component. On the other hand, the model also applies formally to electron-positron-ion (e-p-i) plasmas, if one neglects electron-positron annihilation. A two-fluid plasma model is employed, incorporating both Lorentz and Coriolis forces, thus taking into account the interplay between the gyroscopic (Larmor) frequency ?c and the (intrinsic) plasma rotation frequency O0. By employing a multi-dimensional reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived for the evolution of the electric potential perturbation. Assuming an arbitrary direction of propagation, with respect to the magnetic field, we derive the exact form of nonlinear solutions, and study their characteristics. A parametric analysis is carried out, as regards the effect of the dusty plasma composition (background number density), species temperature(s) and the relative strength of rotation to Larmor frequencies. It is shown that the Larmor and mechanical rotation affect the pulse dynamics via a parallel-to-transverse mode coupling diffusion term, which in fact diverges at ?c ? ±2O0. Pulses collapse at this limit, as nonlinearity fails to balance dispersion. The analysis is complemented by investigating critical plasma compositions, in fact near-symmetric (T- ˜ T+) “pure” (n- ˜ n+) pair plasmas, i.e. when the concentration of the 3rd background species is negligible, case in which the (quadratic) nonlinearity vanishes, so one needs to resort to higher order nonlinear theory. A modified ZK equation is derived and analyzed. Our results are of relevance in pair-ion (fullerene) experiments and also potentially in astrophysical environments, e.g. in pulsars.
Resumo:
A method is described to allow searches for transonic aeroelastic instability of realistically sized aircraft models in multidimensional parameter spaces when computational fluid dynamics are used to model the aerodynamics. Aeroelastic instability is predicted from a small nonlinear eigenvalue problem. The approximation of the computationally expensive interaction term modeling the fluid response is formulated to allow the automated and blind search for aeroelastic instability. The approximation uses a kriging interpolation of exact numerical samples covering the parameter space. The approach, demonstrated for the Goland wing and the multidisciplinary optimization transport wing, results in stability analyses over whole flight envelopes at an equivalent cost of several steady-state simulations.
Resumo:
In this paper the use of eigenvalue stability analysis of very large dimension aeroelastic numerical models arising from the exploitation of computational fluid dynamics is reviewed. A formulation based on a block reduction of the system Jacobian proves powerful to allow various numerical algorithms to be exploited, including frequency domain solvers, reconstruction of a term describing the fluid–structure interaction from the sparse data which incurs the main computational cost, and sampling to place the expensive samples where they are most needed. The stability formulation also allows non-deterministic analysis to be carried out very efficiently through the use of an approximate Newton solver. Finally, the system eigenvectors are exploited to produce nonlinear and parameterised reduced order models for computing limit cycle responses. The performance of the methods is illustrated with results from a number of academic and large dimension aircraft test cases.
Resumo:
A robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties. This allows for parameters to be specified with greater confidence, reflected in a reduction of errors on fitted parameters. On test data sets, fitted uncertainties were reduced by 30%, similar to the improvement that would be offered by moving from triplicate to fivefold repeats (assuming standard errors). This method has been implemented in a popular spreadsheet package and made available online to improve its accessibility. (C) 2011 by Radiation Research Society
Resumo:
This paper describes the application of an improved nonlinear principal component analysis (PCA) to the detection of faults in polymer extrusion processes. Since the processes are complex in nature and nonlinear relationships exist between the recorded variables, an improved nonlinear PCA, which incorporates the radial basis function (RBF) networks and principal curves, is proposed. This algorithm comprises two stages. The first stage involves the use of the serial principal curve to obtain the nonlinear scores and approximated data. The second stage is to construct two RBF networks using a fast recursive algorithm to solve the topology problem in traditional nonlinear PCA. The benefits of this improvement are demonstrated in the practical application to a polymer extrusion process.
Resumo:
Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.
Resumo:
This article discusses the identification of nonlinear dynamic systems using multi-layer perceptrons (MLPs). It focuses on both structure uncertainty and parameter uncertainty, which have been widely explored in the literature of nonlinear system identification. The main contribution is that an integrated analytic framework is proposed for automated neural network structure selection, parameter identification and hysteresis network switching with guaranteed neural identification performance. First, an automated network structure selection procedure is proposed within a fixed time interval for a given network construction criterion. Then, the network parameter updating algorithm is proposed with guaranteed bounded identification error. To cope with structure uncertainty, a hysteresis strategy is proposed to enable neural identifier switching with guaranteed network performance along the switching process. Both theoretic analysis and a simulation example show the efficacy of the proposed method.
Resumo:
It is convenient and effective to solve nonlinear problems with a model that has a linear-in-the-parameters (LITP) structure. However, the nonlinear parameters (e.g. the width of Gaussian function) of each model term needs to be pre-determined either from expert experience or through exhaustive search. An alternative approach is to optimize them by a gradient-based technique (e.g. Newton’s method). Unfortunately, all of these methods still need a lot of computations. Recently, the extreme learning machine (ELM) has shown its advantages in terms of fast learning from data, but the sparsity of the constructed model cannot be guaranteed. This paper proposes a novel algorithm for automatic construction of a nonlinear system model based on the extreme learning machine. This is achieved by effectively integrating the ELM and leave-one-out (LOO) cross validation with our two-stage stepwise construction procedure [1]. The main objective is to improve the compactness and generalization capability of the model constructed by the ELM method. Numerical analysis shows that the proposed algorithm only involves about half of the computation of orthogonal least squares (OLS) based method. Simulation examples are included to confirm the efficacy and superiority of the proposed technique.
Resumo:
Punching failure is the common failure mode in concrete bridge deck slabs when these structural components are subjected to local patch loads, such as tyre loads. Past research has shown that reinforced concrete slabs in girder–slab type bridges have a load-carrying capacity far greater than the ultimate static loads predicted by traditional design methods, because of the presence of compressive membrane action. However, due to the instability problems from punching failure, it is difficult to predict ultimate capacities accurately in numerical analyses. In order to overcome the instability problems, this paper establishes an efficient non-linear finite-element analysis using the commercial finite-element package Abaqus. In the non-linear finite-element analysis, stabilisation methods were adopted and failure criteria were established to predict the ultimate punching behaviour of deck slabs in composite steel–concrete bridges. The proposed non-linear finite-element analysis predictions showed a good correlation on punching capacities with experimental tests.
Resumo:
The linear and nonlinear properties of low-frequency electrostatic excitations of charged dust particles (or defects) in a dense collisionless, unmagnetized Thomas-Fermi plasma are investigated. A fully ionized three-component model plasma consisting of electrons, ions, and negatively charged massive dust grains is considered. Electrons and ions are assumed to be in a degenerate quantum state, obeying the Thomas-Fermi density distribution, whereas the inertial dust component is described by a set of classical fluid equations. Considering large-amplitude stationary profile travelling-waves in a moving reference frame, the fluid evolution equations are reduced to a pseudo-energy-balance equation, involving a Sagdeev-type potential function. The analysis describes the dynamics of supersonic dust-acoustic solitary waves in Thomas-Fermi plasmas, and provides exact predictions for their dynamical characteristics, whose dependence on relevant parameters (namely, the ion-to-electron Fermi temperature ratio, and the dust concentration) is investigated. An alternative route is also adopted, by assuming weakly varying small-amplitude disturbances off equilibrium, and then adopting a multiscale perturbation technique to derive a Korteweg–de Vries equation for the electrostatic potential, and finally solving in terms for electric potential pulses (electrostatic solitons). A critical comparison between the two methods reveals that they agree exactly in the small-amplitude, weakly superacoustic limit. The dust concentration (Havnes) parameter h = Zd0nd0/ne0 affects the propagation characteristics by modifying the phase speed, as well as the electron/ion Fermi temperatures. Our results aim at elucidating the characteristics of electrostatic excitations in dust-contaminated dense plasmas, e.g., in metallic electronic devices, and also arguably in supernova environments, where charged dust defects may occur in the quantum plasma regime.
Resumo:
We present an investigation of coupled nonlinear electromagnetic modes in an electron-positron plasma by using the well established technique of Poincaré surface of section plots. A variety of nonlinear solutions corresponding to interesting coupled electrostatic-electromagnetic modes sustainable in electron-positron plasmas is shown on the Poincaré section. A special class of localized solitary wave solution is identified along a separatrix curve and its importance in the context of electromagnetic wave propagation in an electron-positron plasma is discussed.
Resumo:
A brief review of the occurrence of amplitude modulated structures in space and laboratory plasmas is provided, followed by a theoretical analysis of the mechanism of carrier wave (self-) interaction, with respect to electrostatic plasma modes. A generic collisionless unmagnetized fluid model is employed. Both cold-(zero-temperature) and warm-(finite temperature) fluid descriptions are considered and compared. The weakly nonlinear oscillation regime is investigated by applying a multiple scale (reductive perturbation) technique and a Nonlinear Schrödinger Equation (NLSE) is obtained, describing the evolution of the slowly varying wave amplitude in time and space. The amplitude’s stability profile reveals the possibility of modulational instability to occur under the influence of external perturbations. The NLSE admits exact localized envelope (solitary wave) solutions of bright (pulses) or dark (holes, voids) type, whose characteristics depend on intrinsic plasma parameters. The role of perturbation obliqueness (with respect to the propagation direction), finite temperature and — possibly — defect (dust) concentration is explicitly considered. The relevance of this description with respect to known electron-ion (e-i) as well as dusty (complex) plasma modes is briefly discussed. © 2004 American Institute of Physics
Resumo:
The nonlinear response of a ferroic to an applied field has been studied through the phenomenological Rayleigh Law for over a hundred years. Yet, despite this, the fundamental physical mechanisms at the nanoscale that lead to macroscopic Rayleigh behavior have remained largely elusive, and experimental evidence at small length scales is limited. Here, it is shown using a combination of scanning probe techniques and phase field modeling, that nanoscale piezoelectric response in prototypical Pb(Zr,Ti)O3 films appears to follow a distinctly non-Rayleigh regime. Through statistical analysis, it is found that an averaging of local responses can lead directly to Rayleigh-like behavior of the strain on a macroscale. Phase-field modeling confirms the twist of the ferroelastic interface is key in enhancing piezoelectric response. The studies shed light on the nanoscale origins of nonlinear behavior in disordered ferroics.
Resumo:
Dust-acoustic waves are investigated in a three-component plasma consisting of strongly coupled dust particles and Maxwellian electrons and ions. A fluid model approach is used, with the effects of strong coupling being accounted for by an effective electrostatic "pressure" which is a function of the dust number density and the electrostatic potential. Both linear and weakly nonlinear cases are considered by derivation and analysis of the linear dispersion relation and the Korteweg-de Vries equation, respectively. In contrast to previous studies using this model, this paper presents the results arising from an expansion of the dynamical form of the electrostatic pressure, accounting for the variations in its value in the vicinity of the wave. DOI: 10.1103/PhysRevE.86.066404