972 resultados para John 20:1-18
Resumo:
To assess the relationship of radiolarian production, species distribution in water and surface sediment to water-mass characteristics, biological productivity and export regimes in the Sea of Okhotsk (SOk) we accomplished a quantitative analysis of radiolarian assemblages obtained from 35 surface-sediment samples and 115 plankton samples recording the radiolarian depth distribution in the upper 1000 m of the water column at 23 locations. This study augments the knowledge on the autecological demands of radiolarians dwelling in a specific hydrographic and biological environment, and extracts new information on the significance of radiolarians for the assessment of past oceanographic and climatic development in high latitudes. Highest radiolarian accumulation rates and seasonal radiolarian standing stocks are encountered in the western part of the SOk close to Sakhalin, marking the environmental conditions in this area as most favorable for radiolarian production. Maximum standing stocks occur during summer, indicating that the radiolarian signal preserved in the sediment record is mainly produced during this season when the mesopelagic biomass is at highest activity. We identified seven radiolarian species and groups related to specific water-mass characteristics, depth habitats, and productivity regimes. Of those, Dictyophimus hirundo and Cycladophora davisiana are most prominent in the Sea of Okhotsk Intermediate Water (200-1000 m), the latter representing an indicator of the occurrence of cold and well ventilated intermediate/deep water and enhanced export of organic matter from a highly productive ocean surface. While Antarctissa (?) sp. 1 is typically related to the cold-water Sea of Okhotsk Dicothermal Layer (SODL), ranging between 50 and 150 m water depth, the surface waters above the SODL affected by strong seasonal variability are inhabited predominantly by taxa belonging to the Spongodiscidae, having a broad environmental tolerance. Taxa only found in the sediment record show that the plankton study did not cover all assemblages occurring in the modern SOk. This accounts for an assemblage restricted to the western Kurile Basin and apparently related to environmental conditions influenced by North Pacific and Japan Sea waters. Other important taxa include species of the Plagoniidae group, representing the most prominent contributors to the SOk plankton and surface sediments. These radiolarians show a more opportunistic occurrence and are indicative of high nutrient supply in a hydrographic environment characterized by pronounced stratification enhancing heterotrophic activity and phytodetritus export.
Resumo:
With this study, we investigate the mineralogical variations associated with the low-temperature (<100°C) alteration of normal tholeiitic pillow basalts varying in age from 0.8 to 3.5 Ma. Their alteration intensity varies systematically and is related to several factors, including (1) the aging of the igneous crust, (2) the increase of temperatures from the younger to the older sites, measured at the sediment/basement interface, (3) the local and regional variations in lithology and primary porosity, and (4) the degree of pillow fracturing. Fractures represent the most important pathways that allow significant penetration of fluids into the rock and are virtually the only factor controlling the alteration of the glassy rim and the early stages of pillow alteration. Three different alteration stages have been recognized: alteration of glassy margin, oxidizing alteration through fluid circulation in fracture systems, and reducing alteration through diffusion. All the observed mineralogical and chemical variations occurring during the early stages of alteration are interpreted as the result of the rock interaction with "normal," alkaline, and oxidizing seawater, along preferential pathways represented by the concentric and radial crack systems. The chemical composition of the fluid progressively evolves while moving into the basalt, leading to a reducing alteration stage, which is initially responsible for the precipitation of Fe-rich saponite and minor sulfides and subsequently for the widespread formation of carbonates. At the same time, the system evolved from being "water dominated" to being "rock dominated." No alteration effects in pillow basalts were observed that must have occurred at temperatures higher than those measured during Leg 168 at the basement/sediment interface (e.g., between 15° and 64°C).
Resumo:
High-resolution quantitative diatom data are tabulated for the early part of the late Pliocene ( 3.25 to 2.08 Ma ) at DSDP Site 580 in the northwestern Pacific. Sample spacing averages 11 k.y. between 3.1 and 2.8 Ma, but increases to 14 to 19 k.y. prior to 3.1 Ma and after 2.8 Ma. Q-mode factor analysis of the middle Pliocene assemblage reveals four factors which explain 92.4% of the total variance of the 47 samples studied between 3.25 and 2.55 Ma. Three of the factors are closely related to modern subarctic, transitional, and subtropical elements, while the fourth factor, which is dominated by Coscinodiscus marginatus and the extinct Pliocene species Neodenticula kamtschatica, appears to correspond to a middle Pliocene precursor of the subarctic water mass. Knowledge of the modern and generalized Pliocene paleoclimatic relationships of various diatom taxa is used to generate a paleoclimate curve ("Twt") based on the ratio of warm-water (subtropical) to cold-water diatoms with warm-water transitional taxa (Thalassionema nitzschioides, Thalassiosira oestrupii, and Coscinodiscus radiatus) factored into the equation at an intermediate (0.5) value. The "Twt" ratios at more southerly DSDP Sites 579 and 578 are consistently higher (warmer) than those at Site 580 throughout the Pliocene, suggesting the validity of the ratio as a paleoclimatic index. Diatom paleoclimatic data reveal a middle Pliocene (3.1 to 3.0 Ma) warm interval at Site 580 during which paleotemperatures may have exceeded maximum Holocene values by 3 °- 5.5 °C at least three times. This middle Pliocene warm interval is also recognized by planktic foraminifers in the North Atlantic, and it appears to correspond with generalized depleted oxygen isotope values suggesting polar warming. The diatom "Twt" curve for Site 580 compares fairly well with radiolarian and silicoflagellate paleoclimatic curves for Site 580, planktic foraminiferal sea-surface temperature estimates for the North Atlantic, and benthic oxygen isotope curves for late Pliocene, although higher resolution studies on paired samples are required to test the correspondence of these various paleoclimatic indices.
Resumo:
A field study was conducted in Santala Bay with weekly samplings during February and March 2000. Ice thickness was 20-28 cm, snow cover 0-1 cm. The under-ice water column was stratified with a cold (-0.3 - 0.2°C) and less saline (S = 2.1-4.9) interface layer. Concentrations of particulate organic carbon (0.5-5.8 mg POC/l) and algal pigments (0.3-18.2 µg chlorophyll a/l) were higher in the ice than in the water (0.2-0.5 mg POC/l, 1.6-7.1 µg chlorophyll a/l) and peaked mostly in the bottom part of the ice. The thin ice and almost lacking snow cover had favoured an early ice-algal and phytoplankton bloom. The diversity of metazoans was low, with six species in the ice and eight species in the under-ice water. The rotifer Synchaeta cf. littoralis dominated both in ice and water, with maximum abundances of 230 individuals/l in the bottom part of the ice. Rotifer eggs were also observed in the ice. Baltic sea ice seems to be a suitable habitat for rotifers. Nauplii and copepodids of the calanoid Acartia longiremis in the under-ice water showed some herbivorous feeding (<0.1-0.23 ng gut pigment/individual), but analysis of fatty acids, fatty alcohols and biomarker ratios indicated a more omnivorous/carnivorous diet. Despite low temperatures, this copepod showed growth and development below the ice, doubling in numbers (mainly CI, CII) from 118 to 230 individuals m during the third week of March.
Resumo:
Along a transatlantic section from 57°N to 60°S that was carried out from November 7 till December 19, 2000 on board R/V Horizont II concentrations of CO2 were measured in the near-water layer of the air and differences between partial pressures in water and air in various climatic zones were calculated. It was shown that variations of CO2 concentrations in the near-water layer of air and those of values of water-air partial pressure difference were from 324x10**-6 to 426x10**-6 and from 150x10**-6 to 100x10**-6 atm, respectively. Maximum value of CO2 partial pressure in air in the near-water layer (426x10**-6 atm) was noted at 45°-47°N; minimum of 324x10**-6 atm was found in Antarctica at 59°S. During measurenents maximum value of CO2 partial pressure difference in water and air (150 x10**-6) was observed at 45°-48°N; maximum flux in this case was directed from the atmosphere to water. Maximum value of CO2 partial pressure difference in water and air for flux directed from the ocean to air (100 x10**-6) was observed at 59°-60°S. Comparison of calculated values of partial pressure difference in water and air with previous data points to more intense exchange of CO2 between the ocean and atmosphere during the survey period was considered. According to values of CO2 partial pressure difference in air and water as compared to 1975, exchange intensity in the Northern Hemisphere (absorption from the atmosphere) increased. A well-pronounced latitudinal effect of distribution of CO2 partial pressure in air was observed. Along the route variations in CO2 concentrations in zones of water divergence and convergence were registered.