960 resultados para John, of Nepomuk, Saint, ca. 1340-1393
Resumo:
Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)(3)(circle)9H(2)O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N-2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.
Resumo:
The metamorphic belt of the Western Alps was subjected to widespread extensional tectonism at the end of the Eocene (ca. 45-35 Ma). Extension was accommodated by hinterland-directed movements along gently inclined extensional shear zones, which facilitated rapid exhumation of high-pressure and ultra-high-pressure rocks. This deformation resulted in a normal metamorphic sequence. Extension in the inner parts of the Western Alps was coeval with shortening at the front of the belt (foreland-directed thrusts), which took place during decompression, and emplaced higher grade metamorphic units over lower grade metamorphic rocks, thus forming an inverse metamorphic sequence. Two mechanisms for this extensional episode are discussed: (1) collapse of an overthickened lithosphere, and (2) internal readjustments within the orogenic wedge due to subduction channel dynamics. We favour the latter mechanism because it can account for the development of the observed inverse and normal metamorphic sequences along foreland-directed thrusts and hinterland-directed detachments, respectively. This hypothesis is supported by published structural, metamorphic and geochronological data from four geological transects through the Western Alps. This study also emphasizes the importance of post-shearing deformation (e.g. horizontal buckling versus vertical flattening), which can modify the distribution of hinterland- and foreland-directed shear zones in orogenic belts. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Insects have a much smaller repertoire of voltage-gated calcium (Ca-v) channels than vertebrates. Drosophila melanogaster harbors only a single ortholog of each of the vertebrate Ca(v)1, Ca(v)2, and Ca(v)3 subtypes, although its basal inventory is expanded by alternative splicing and editing of Ca-v channel transcripts. Nevertheless, there appears to be little functional plasticity within this limited panel of insect Ca-v channels, since severe loss-of-function mutations in genes encoding the pore-forming a, subunits in Drosophila are embryonic lethal. Since the primary role of spider venom is to paralyze or kill insect prey, it is not surprising that most, if not all, spider venoms contain peptides that potently modify the activity of these functionally critical insect Ca-v channels. Unfortunately, it has proven difficult to determine the precise ion channel subtypes recognized by these peptide toxins since insect Ca-v channels have significantly different pharmacology to their vertebrate counterparts, and cloned insect Ca-v channels are not available for electrophysiological studies. However, biochemical and genetic studies indicate that some of these spider toxins might ultimately become the defining pharmacology for certain subtypes of insect Ca-v channels. This review focuses on peptidic spider toxins that specifically target insect Ca-v channels. In addition to providing novel molecular tools for ion channel characterization, some of these toxins are being used as leads to develop new methods for controlling insect pests. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this PhD study, the effects of the cation substitutions on the physical properties of pyroxenes have been discussed. The results of this work extend the knowledge on pyroxenes with different chemical compositions. These properties might be used in the development of ceramic pigments, advanced materials and for the mineralogical phase identification. First of all, the crystallographic differences between Ge and Si pyroxenes have been examined. The structure of C2/c Ca rich Ge clinopyroxenes is very close to the low pressure C2/c structural configuration found in Ca-rich Si-pyroxenes. The shear of the unit cell is very similar, and the difference between a Ge end member and the corresponding Si-rich one is less than 1°. Instead, a remarkable difference exists between Ca-poor Si and Ge clinopyroxenes. First, Ca-poor Ge pyroxenes do not display a P21/c symmetry, but retain the C2/c symmetry; second, the observed C2/c structure shows, at room pressure, the configuration with highly kinked tetrahedral chains characteristic of the high pressure C2/c symmetry of Si Ca-poor pyroxenes. In orthopyroxenes, with Pbca symmetry, Ge-pyroxenes have volume larger than Si-pyroxenes. Samples along the system CaCoGe2O6 - CoCoGe2O6 have been synthesized at three different temperatures: 1050 °C, 1200 °C and 1250 °C. The aim of these solid state syntheses was to obtain a solid solution at ambient pressure, since the analogues Si-system needs high pressure. Unfortunately, very limited solution occurs because the structure forms of the two end member (high temperature for CaCoGe2O6 and high pressure CoCoGe2O6) are incompatible. The phase diagram of this system has been sketched and compared to that of Si. The cobalt end member (CoCoGe2O6) is stable at ambient pressure in two symmetries: at 1050 °C C2/c and 1200 °C Pbca. The impurity phase formed during these experiments is cobalt spinel. Raman spectroscopy has been used to investigate the vibrational properties of Ca-pyroxenes CaCoGe2O6, CaMgGe2O6, CaMgSi2O6 and CaCoSi2O6. A comparison between silicate and germanate pyroxenes shows significant changes in peak positions of the corresponding modes caused mainly by the difference of the Ge-Si atomic weight along with the distortion and compression of the coordination polyhedra. Red shift in Raman spectra of germanates has been calculated by a rough scale factor calculated by a simple harmonic oscillator model, considering the different bond lengths for 4-coordinated Si ~ 1.60- 1.65 Å vs Ge–O distance ~1.70 - 1.80 Å. The Raman spectra of CaMgGe2O6 and CaCoGe2O6 have been classified, in analogy with silicate (Wang et al., 2001) counterparts, in different ranges: - R1 (880-640 cm-1): strong T-O stretching modes of Ge and non-bridging O1 and O2 atoms within the GeO4 tetrahedron; - R2 (640-480 cm-1): stretching/bending modes of Ge-Obr-Ge bonds (chain stretching and chain bending); - R4 (480-360 cm-1): O-Ge-O vibrations; - R3 (360-240 cm-1): motions of the cations in M2 and M1 sites correlated with tetrahedral chain motion and tilting tetrahedra; - R5 (below 240 cm-1): lattice modes. The largest shift with respect to CaMgSi2O6 - CaCoSi2O6 is shown by the T-O stretching and chain modes. High-pressure Raman spectroscopy (up to about 8 GPa) on the same samples of Ca-pyroxenes using an ETH-type diamond anvil cell shows no phase transition within the P-ranges investigated, as all the peak positions vary linearly as a function of pressure. Our data confirm previous experimental findings on Si-diopside (Chopelas and Serghiou, 2000). In the investigated samples, all the Raman peaks shift upon compression, but the major changes in wavenumber with pressure are attributed to the chain bending (Ge-Obr-Ge bonds) and tetrahedra stretching modes (Ge-Onbr). Upon compression, the kinking angle, the bond lengths and T-T distances between tetrahedra decrease and consequently the wavenumber of the bending chain mode and tetrahedra stretching mode increases. Ge-pyroxenes show the higher P-induced peak-position shifts, being more compressible than corresponding silicates. The vibrational properties of CaM2+Ge2O6 (M2+ =Mg, Mn, Fe, Co, Ni, Zn) are reported for the first time. The wavenumber of Ge-Obr-Ge bending modes decreases linearly with increasing ionic radius of the M1 cation. No simple correlation has been found with M1 atomic mass or size or crystallographic parameters for the peak at ~850 cm-1 and in the low wavenumber regions. The magnetic properties of the system CaCoSi2O6 - CoCoSi2O6 have been investigated by magnetometry. The join is always characterized by 1 a.p.f.u. of cobalt in M1 site and this causes a pure collinear antiferromagnetic behaviour of the intra-chain superexchange interaction involving Co ions detected in all the measurements, while the magnetic order developed by the cobalt ions in M2 site (intra-chain) is affected by weak ferromagnetism, due to the non-collinearity of their antiferromagnetic interaction. In magnetically ordered systems, this non-collinearity effect promotes a spin canting of anti-parallel aligned magnetic moments and thus is a source of weak ferromagnetic behaviour in an antiferromagnetic. The weak ferromagnetism can be observed only for the samples with Co content higher than 0.5 a.p.f.u. in M2, when the concentration is sufficiently high to create a long range order along the M2 chain which is magnetically independent of M1 chain. The ferromagnetism was detected both in the M(T) at 10 Oe and M(H).
Resumo:
The principal aim of this work was to determine the role of non-metallic inclusions in the process of hydrogen stepwise cracking (SWC). Additionally, the influence of inclusions upon the notch ductility of hydrogen charged (HC) and uncharged (UN) tensile specimens was examined. To obtain a basis for experiment a series of low carbon-manganese steels were prepared by induction melting. In order to produce variations in the composition, morphology, volume fraction, size and distribution of the inclusions the steel chemistry was adjusted prior to casting by additions of deoxidiser and Ca-Si injection. Sections of each ingot were hot rolled. Metallography, image analysis, mechanical tests and hydrogen SWC tests were then carried out. The volume fraction, morphology, and shape of inclusions influenced the tensile ductility of the steels. Marked anisotropy was found in the steels containing type II MnS inclusions at all rolling temperatures, whereas the fully Ca treated steel was isotropic. It was found that several inclusion parameters (projected length PL, mean free distance MFD, nearest-neighbour distance NND) correlated with fracture strain. An increase in inclusion volume fraction and/or the dimension of inclusions on a plane parallel to the plane of fracture led to a decrease in fracture strain. The inclusion parameters did not correlate with the fracture strains for the HC tensile specimens. However, large or clusters of inclusions acted as the principal sites for crack initiation. `Fisheyes' or areas of `flat' fracture were often found on these fracture surfaces. The criteria for SWC initiation was found to be either large inclusions or clusters of inclusions. As the PL of inclusions increased the probability of large SWCs occurring increased. SWC initiation at inclusions was believed to occur at a critical concentration of hydrogen. Factors which assisted the concentration of hydrogen at inclusions were discussed. None of the proposed mechanisms of hydrogen embrittlement could be identified as the single cause of SWC.
Resumo:
In this paper a Markov chain based analytical model is proposed to evaluate the slotted CSMA/CA algorithm specified in the MAC layer of IEEE 802.15.4 standard. The analytical model consists of two two-dimensional Markov chains, used to model the state transition of an 802.15.4 device, during the periods of a transmission and between two consecutive frame transmissions, respectively. By introducing the two Markov chains a small number of Markov states are required and the scalability of the analytical model is improved. The analytical model is used to investigate the impact of the CSMA/CA parameters, the number of contending devices, and the data frame size on the network performance in terms of throughput and energy efficiency. It is shown by simulations that the proposed analytical model can accurately predict the performance of slotted CSMA/CA algorithm for uplink, downlink and bi-direction traffic, with both acknowledgement and non-acknowledgement modes.
Resumo:
The rodent ventrobasal (VB) thalamus receives sensory inputs from the whiskers and projects to the cortex, from which it receives reciprocal excitatory afferents. Much is known about the properties and functional roles of these glutamatergic inputs to thalamocortical neurons in the VB, but no data are available on how these afferents can affect thalamic glial cells. In this study, we used combined electrophysiological recordings and intracellular calcium ([Ca(2+)](i)) imaging to investigate glial cell responses to synaptic afferent stimulation. VB thalamus glial cells can be divided into two groups based on their [Ca(2+)](i) and electrophysiological responses to sensory and corticothalamic stimulation. One group consists of astrocytes, which stain positively for S100B and preferentially load with SR101, have linear current-voltage relations and low input resistance, show no voltage-dependent [Ca(2+)](i) responses, but express mGluR5-dependent [Ca(2+)](i) transients following stimulation of the sensory and/or corticothalamic excitatory afferent pathways. Cells of the other glial group, by contrast, stain positively for NG2, and are characterized by high input resistance, the presence of voltage-dependent [Ca(2+)](i) elevations and voltage-gated inward currents. There were no synaptically induced [Ca(2+)](i) elevations in these cells under control conditions. These results show that thalamic glial cell responses to synaptic input exhibit different properties to those of thalamocortical neurons. As VB astrocytes can respond to synaptic stimulation and signal to neighbouring neurons, this glial cell organization may have functional implications for the processing of somatosensory information and modulation of behavioural state-dependent thalamocortical network activities.
Resumo:
The microstructure and thermoelectric properties of Yb-doped Ca0.9-x Yb x La0.1 MnO3 (0 ≤ x ≤ 0.05) ceramics prepared by using the Pechini method derived powders have been investigated. X-ray diffraction analysis has shown that all samples exhibit single phase with orthorhombic perovskite structure. All ceramic samples possess high relative densities, ranging from 97.04% to 98.65%. The Seebeck coefficient is negative, indicating n-type conduction in all samples. The substitution of Yb for Ca leads to a marked decrease in the electrical resistivity, along with a moderate decrease in the absolute value of the Seebeck coefficient. The highest power factor is obtained for the sample with x = 0.05. The electrical conduction in these compounds is due to electrons hopping between Mn3+ and Mn4+, which is enhanced by increasing Yb content.
Resumo:
The purpose of this dissertation was to analyze the works of Federico García Lorca within the mystic context that dominates their very genesis. The problematic definition of mysticism was explored lest it be confused with traditional mysticism, which implies union with the divine. The historiography of literature speaks of the Mystic Genre, yet it does not address the mystic mode of artistic creation due to its inability to adhere to rational measure. This mode of conception was explored through Lorca's poetic discourse: ‘Lorquian mysticism’ is the result of the poet's cultivation of an innate spiritual potential enhanced by external influences and technical mastery. ^ There is visible influence of Fray Luis of León in Lorca's early Libro de poemas and El maleficio de la mariposa, as well as of Saint John of the Cross in the later Diván del Tamarit, Sonetos de amor and Yerma. However, definitive echoes of poets from the Sufi and other Eastern mystic traditions were also illustrated in these late works. A persistent longing to elide the physical condition, the greatest obstacle of the transcendental quest, is the essence of Lorca's poetic voice. ^ The object of this analysis was Lorca's language, which reaches levels removed from conventional thought. His dazzling metaphors and his particular use of symbols and of paradox compare equitably with those of great mystic poets. Like them, Lorca was faced with the same limitations of language to describe an ineffable experience; he embraced what Octavio Paz describes as ‘sacred language’: there is a linguistic frugality as well as an ambiguity in Lorca's poetic art that result from his realization of supercognitive states. Yet such an interpretation is rejected by the rationalist approach, invoking the age-old debate between faith and reason and signaling the application of psychoanalytical theory. This limited approach was disputed on the basis of reader-response theory. Lorca was truly an eclectic and a modification of the conventional reader's preestablished horizon of expectations is essential in order to seal the gaps in his late works. This innovative perspective placed Lorca within the framework of a new mysticism in the modern world. ^
Resumo:
In ocean margin sediments both marine and terrestrial organic matter (OM) are buried but the factors governing their relative preservation and degradation are not well understood. In this study, we analysed the degree of preservation of marine isoprenoidal and soil-derived branched glycerol dialkyl glycerol tetraethers (GDGTs) upon long-term oxygen exposure in OM-rich turbidites from the Madeira Abyssal Plain by analyzing GDGT concentrations across oxidation fronts. Relative to the anoxic part of the turbidites ca. 7-20% of the soil-derived branched GDGTs were preserved in the oxidized part while only 0.2-3% of the marine isoprenoid GDGT crenarchaeol was preserved. Due to these different preservation factors the Branched Isoprenoid Tetraether (BIT) index, a ratio between crenarchaeol and the major branched GDGTs that is used as a tracer for soil-derived organic matter, substantially increases from 0.02 to 0.4. Split Flow Thin Cell (SPLITT) separation of turbidite sediments showed that the enhanced preservation of soil-derived carbon was a general phenomenon across the fine particle size ranges (<38 ?m). Calculations reveal that, despite their relatively similar chemical structures, degradation rates of crenarchaeol are 2-fold higher than those of soil-derived branched GDGTs, suggesting preferential soil OM preservation possibly due to matrix protection.
Resumo:
This research is about the cultural marks and meanings production on the popular culture context, in honor of Catholics Saints of June: Saint Antony; Saint John and Saint Peter (with celebrations in June 13th, 24th and 30th respectively). These marks are find on the newspapers’ photography of Tribuna do Norte (Natal, Rio Grande do Norte, Brazil) and Correio da Manhã (Lisbon, Portugal). All the photos were published in June 2012. The analysis has theory and methodology in Folkcommunication and in Sociocultural Photocatography. The investigation has focus in the meanings of these marks on the photojournalism about the popular parties and their practices. The study observes also a common view to report about popular culture, which has the influence of a hegemonic paradigm that considers itself the only true one.
Resumo:
For contain beneficial properties, aluminum alloys are gaining more importance in different industrial areas, becoming the subject of study in several academic fields. When related to welding these alloys have some peculiarities that may hinder the union, such as microscopic oxide layer present on the metal surface. The MIG welding process, also known as GMAW, has developed versions that can be effective for welding aluminum. Knowing this, for this paper, two versions of pulsed MIG (CC + and CA) were chosen to evaluate which best suits pass by filling bevel on AA5083 aluminum sheets with 8 and 12 mm thick respectively. Furthermore, two types of wire, ER5087 and ER5183 were evaluated. To evaluate the process and versions of the wires, the high-speed cameras and thermal were used to monitor the metal transfer and the thermal behavior respectively, and the metallographic analysis for macrographic view of the weld beads and non-destructive testing by radiography for observation of possible discontinuities. It was found that the technique of MIG-P CA showed better results ahead of another technique both welding conditions imposed. When connected to the wires, they showed similar results, with uniform cords and seamless
Resumo:
The effect of pCO2 on carbon acquisition and intracellular assimilation was investigated in the three bloom-forming diatom species, Eucampia zodiacus (Ehrenberg), Skeletonema costatum (Greville) Cleve, Thalassionema nitzschioides (Grunow) Mereschkowsky and the non-bloom-forming Thalassiosira pseudonana (Hust.) Hasle and Heimdal. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3? uptake rates were measured by membrane-inlet mass spectrometry (MIMS) in cells acclimated to pCO2 levels of 370 and 800 ?atm. To investigate whether the cells operate a C4-like pathway, activities of ribulose-1,5-bisphosphate carboxylase (RubisCO) and phosphoenolpyruvate carboxylase (PEPC) were measured at the mentioned pCO2 levels and a lower pCO2 level of 50 ?atm. In the bloom-forming species, extracellular CA activities strongly increased with decreasing CO2 supply while constantly low activities were obtained for T. pseudonana. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution decreased with decreasing CO2 supply in the two bloom-forming species S. costatum and T. nitzschioides, but not in T. pseudonana and E. zodiacus. With the exception of S. costatum, maximum rates (Vmax) of photosynthesis remained constant in all investigated diatom species. Independent of the pCO2 level, PEPC activities were significantly lower than those for RubisCO, averaging generally less than 3%. All examined diatom species operate highly efficient CCMs under ambient and high pCO2, but differ strongly in the degree of regulation of individual components of the CCM such as Ci uptake kinetics and extracellular CA activities. The present data do not suggest C4 metabolism in the investigated species.
Resumo:
An 1180-cm long core recovered from Lake Lyadhej-To (68°15'N, 65°45'E, 150 m a.s.l.) at the NW rim of the Polar Urals Mountains reflects the Holocene environmental history from ca. 11,000 cal. yr BP. Pollen assemblages from the diamicton (ca. 11,000-10,700 cal. yr BP) are dominated by Pre-Quaternary spores and redeposited Pinaceae pollen, pointing to a high terrestrial input. Turbid and nutrient-poor conditions existed in the lake ca. 10,700-10,550 cal. yr BP. The chironomid-inferred reconstructions suggest that mean July temperature increased rapidly from 10.0 to 11.8 °C during this period. Sparse, treeless vegetation dominated on the disturbed and denuded soils in the catchment area. A distinct dominance of planktonic diatoms ca. 10,500-8800 cal. yr BP points to the lowest lake-ice coverage, the longest growing season and the highest bioproductivity during the lake history. Birch forest with some shrub alder grew around the lake reflecting the warmest climate conditions during the Holocene. Mean July temperature was likely 11-13 °C and annual precipitation-400-500 mm. The period ca. 8800-5500 cal. yr BP is characterized by a gradual deterioration of environmental conditions in the lake and lake catchment. The pollen- and chironomid-inferred temperatures reflect a warm period (ca. 6500-6000 cal. BP) with a mean July temperature at least 1-2 °C higher than today. Birch forests disappeared from the lake vicinity after 6000 cal. yr BP. The vegetation in the Lyadhej-To region became similar to the modern one. Shrub (Betula nana, Salix) and herb tundra have dominated the lake catchment since ca. 5500 cal. yr BP. All proxies suggest rather harsh environmental conditions. Diatom assemblages reflect relatively short growing seasons and a longer persistence of lake-ice ca. 5500-2500 cal. yr BP. Pollen-based climate reconstructions suggest significant cooling between ca. 5500 and 3500 cal. yr BP with a mean July temperature 8-10 °C and annual precipitation-300-400 mm. The bioproductivity in the lake remained low after 2500 cal. yr BP, but biogeochemical proxies reflect a higher terrestrial influx. Changes in the diatom content may indicate warmer water temperatures and a reduced ice cover on the lake. However, chironomid-based reconstructions reflect a period with minimal temperatures during the lake history.
Resumo:
Increasing atmospheric pCO2 reduces the saturation state of seawater with respect to the aragonite, high-Mg calcite (Mg/Ca > 0.04), and low-Mg calcite (Mg/Ca < 0.04) minerals from which marine calcifiers build their shells and skeletons. Notably, these polymorphs of CaCO3 have different solubilities in seawater: aragonite is more soluble than pure calcite, and the solubility of calcite increases with its Mg-content. Although much recent progress has been made investigating the effects of CO2-induced ocean acidification on rates of biological calcification, considerable uncertainties remain regarding impacts on shell/skeletal polymorph mineralogy. To investigate this subject, eighteen species of marine calcifiers were reared for 60-days in seawater bubbled with air-CO2 mixtures of 409 ± 6, 606 ± 7, 903 ± 12, and 2856 ± 54 ppm pCO2, yielding aragonite saturation states of 2.5 ± 0.4, 2.0 ± 0.4, 1.5 ± 0.3, and 0.7 ± 0.2. Calcite/aragonite ratios within bimineralic calcifiers increased with increasing pCO2, but were invariant within monomineralic calcifiers. Calcite Mg/Ca ratios (Mg/CaC) also varied with atmospheric pCO2 for two of the five high-Mg-calcite-producing organisms, but not for the low-Mg-calcite-producing organisms. These results suggest that shell/skeletal mineralogy within some-but not all-marine calcifiers will change as atmospheric pCO2 continues rising as a result of fossil fuel combustion and deforestation. Paleoceanographic reconstructions of seawater Mg/Ca, temperature, and salinity from the Mg/CaC of well-preserved calcitic marine fossils may also be improved by accounting for the effects of paleo-atmospheric pCO2 on skeletal Mg-fractionation.