969 resultados para Jean-Pierre Ronfard


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present data set provides contextual environmental data for samples from the Tara Oceans Expedition (2009-2013) that were selected for publication in a special issue of the SCIENCE journal (see related references below). The data set provides calculated averages of mesaurements made at the sampling location and depth, calculated averages from climatologies (AMODIS, VGPM) and satellite products.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Iron availability in seawater, namely the concentration of dissolved inorganic iron ([Fe']), is affected by changes in pH. Such changes in the availability of iron should be taken into account when investigating the effects of ocean acidification on phytoplankton ecophysiology because iron plays a key role in phytoplankton metabolism. However, changes in iron availability in response to changes in ocean acidity are difficult to quantify specifically using natural seawater because these factors change simultaneously. In the present study, the availability of iron and carbonate chemistry were manipulated individually and simultaneously in the laboratory to examine the effect of each factor on phytoplankton ecophysiology. The effects of various pCO2 conditions (390, 600, and 800 µatm) on the growth, cell size, and elemental stoichiometry (carbon [C], nitrogen [N], phosphorus [P], and silicon [Si]) of the diatom Thalassiosira weissflogii under high iron ([Fe'] = 240 pmol/l) and low iron ([Fe'] = 24 pmol/l) conditions were investigated. Cell volume decreased with increasing pCO2, whereas intracellular C, N, and P concentrations increased with increasing pCO2 only under high iron conditions. Si:C, Si:N, and Si:P ratios decreased with increasing pCO2. It reflects higher production of net C, N, and P with no corresponding change in net Si production under high pCO2 and high iron conditions. In contrast, significant linear relationships between measured parameters and pCO2 were rarely detected under low iron conditions. We conclude that the increasing CO2 levels could affect on the biogeochemical cycling of bioelements selectively under the iron-replete conditions in the coastal ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Partial pressure of CO2 (pCO2) and iron availability in seawater show corresponding changes due to biological and anthropogenic activities. The simultaneous change in these factors precludes an understanding of their independent effects on the ecophysiology of phytoplankton. In addition, there is a lack of data regarding the interactive effects of these factors on phytoplankton cellular stoichiometry, which is a key driving factor for the biogeochemical cycling of oceanic nutrients. Here, we investigated the effects of pCO2 and iron availability on the elemental composition (C, N, P, and Si) of the diatom Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle by dilute batch cultures under 4 pCO2 (~200, ~380, ~600, and ~800 µatm) and five dissolved inorganic iron (Fe'; ~5, ~10, ~20, ~50, and ~100 pmol /L) conditions. Our experimental procedure successfully overcame the problems associated with simultaneous changes in pCO2 and Fe' by independently manipulating carbonate chemistry and iron speciation, which allowed us to evaluate the individual effects of pCO2 and iron availability. We found that the C:N ratio decreased significantly only with an increase in Fe', whereas the C:P ratio increased significantly only with an increase in pCO2. Both Si:C and Si:N ratios decreased with increasing pCO2 and Fe'. Our results indicate that changes in pCO2 and iron availability could influence the biogeochemical cycling of nutrients in future oceans with high- CO2 levels, and, similarly, during the time course of phytoplankton blooms. Moreover, pCO2 and iron availability may also have affected oceanic nutrient biogeochemistry in the past, as these conditions have changed markedly over the Earth's history.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification, the assimilation of atmospheric CO2 by the oceans that decreases the pH and CaCO3 saturation state (Omega) of seawater, is projected to have severe adverse consequences for calcifying organisms. While strong evidence suggests calcification by tropical reef-building corals containing algal symbionts (zooxanthellae) will decline over the next century, likely responses of azooxanthellate corals to ocean acidification are less well understood. Because azooxanthellate corals do not obtain photosynthetic energy from symbionts, they provide a system for studying the direct effects of acidification on energy available for calcification. The solitary azooxanthellate orange cup coral Balanophyllia elegans often lives in low-pH, upwelled waters along the California coast. In an 8-month factorial experiment, we measured the effects of three pCO2 treatments (410, 770, and 1220 µatm) and two feeding frequencies (3-day and 21-day intervals) on "planulation" (larval release) by adult B. elegans, and on the survival, skeletal growth, and calcification of newly settled juveniles. Planulation rates were affected by food level but not pCO2. Juvenile mortality was highest under high pCO2 (1220 µatm) and low food (21-day intervals). Feeding rate had a greater impact on calcification of B. elegans than pCO2. While net calcification was positive even at 1220 µatm (~3 times current atmospheric pCO2), overall calcification declined by ~25-45%, and skeletal density declined by ~35-45% as pCO2 increased from 410 to 1220 µatm. Aragonite crystal morphology changed at high pCO2, becoming significantly shorter but not wider at 1220 µatm. We conclude that food abundance is critical for azooxanthellate coral calcification, and that B. elegans may be partially protected from adverse consequences of ocean acidification in habitats with abundant heterotrophic food.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rising anthropogenic CO2 in the surface ocean has raised serious concerns for the ability of calcifying organisms to secrete their shells and skeletons. Previous mollusc carbonate perturbation experiments report deleterious effects at lowered pH (7.8-7.4 pH units), including reduced shell length and thickness and deformed shell morphology. It is not clear whether the reduced shell growth results from a decrease in calcification rate due to lowered aragonite saturation or from an indirect effect on mollusc metabolism. We take a novel approach to discerning between these two processes by examining the impact of lowered pH on the 'vital-effect' associated with element ratios. Reported herein are the first element ratio (Sr/Ca, Ba/Ca, B/Ca, Mg/Ca and Mn/Ca) profiles throughout the larval life stage of Mytilus edulis. Element ratio data for individuals reared in ambient conditions provide new insights into biomineralization during larval development. Sr/Ca ratios are consistent with Sr incorporation in the mineral phase. Mg and Mn are likely hosted in an organic phase. The Ba partition coefficient of early larval shells is one of the highest reported in biogenic aragonite. The reason for the high Ba concentrations is unknown, but may reflect the assimilation of Ba from food and/or Ba concentration in an organic or amorphous carbonate phase. There is no observable difference in the way the studied elements are incorporated into the shells of individuals reared in ambient and lowered pH conditions. The reduced growth rate at lower pH may be a consequence of a disruption to the larval mollusc metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolic processes have the potential to modulate the effects of ocean acidification (OA) in nearshore macroalgal beds. We investigated whether natural mixed assemblages of the articulate coralline macroalgae Arthrocardia corymbosa and understory crustose coralline algae (CCA) altered pH and O2 concentrations within and immediately above their canopies. In a unidirectional flume, we tested the effect of water velocity (0-0.1 m/s), bulk seawater pH (ambient pH 8.05, and pH 7.65), and irradiance (photosynthetically saturating light and darkness) on pH and O2 concentration gradients, and the derived concentration boundary layer (CBL) thickness. At bulk seawater pH 7.65 and slow velocities (0 and 0.015 m/s), pH at the CCA surface increased to 7.90-8.00 in the light. Although these manipulations were short term, this indicates a potential daytime buffering capacity that could alleviate the effects of OA. Photosynthetic activity also increased O2 concentrations at the surface of the CCA. However, this moderating capacity was flow dependent; the CBL thickness decreased from an average of 26.8 mm from the CCA surface at 0.015 m/s to 4.1 mm at 0.04 m/s. The reverse trends occurred in the dark, with respiration causing pH and O2 concentrations to decrease at the CCA surface. At all flow velocities the CBL thicknesses (up to 68 mm) were much greater than those previously published, indicating that the presence of canopies can alter the CBL substantially. In situ, the height of macroalgal canopies can be an order of magnitude larger than those used here, indicating that the degree of buffering to OA will be context dependent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean surface CO2 levels are increasing in line with rising atmospheric CO2 and could exceed 900 µatm by year 2100, with extremes above 2000 µatm in some coastal habitats. The imminent increase in ocean pCO2 is predicted to have negative consequences for marine fishes, including reduced aerobic performance, but variability among species could be expected. Understanding interspecific responses to ocean acidification is important for predicting the consequences of ocean acidification on communities and ecosystems. In the present study, the effects of exposure to near-future seawater CO2 (860 µatm) on resting (M O2rest) and maximum (M O2max) oxygen consumption rates were determined for three tropical coral reef fish species interlinked through predator-prey relationships: juvenile Pomacentrus moluccensis and Pomacentrus amboinensis, and one of their predators: adult Pseudochromis fuscus. Contrary to predictions, one of the prey species, P. amboinensis, displayed a 28-39% increase in M O2max after both an acute and four-day exposure to near-future CO2 seawater, while maintaining M O2rest. By contrast, the same treatment had no significant effects on M O2rest or M O2max of the other two species. However, acute exposure of P. amboinensis to 1400 and 2400 µatm CO2 resulted in M O2max returning to control values. Overall, the findings suggest that: (1) the metabolic costs of living in a near-future CO2 seawater environment were insignificant for the species examined at rest; (2) the M O2max response of tropical reef species to near-future CO2 seawater can be dependent on the severity of external hypercapnia; and (3) near-future ocean pCO2 may not be detrimental to aerobic scope of all fish species and it may even augment aerobic scope of some species. The present results also highlight that close phylogenetic relatedness and living in the same environment, does not necessarily imply similar physiological responses to near-future CO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rising anthropogenic carbon dioxide (CO2) dissolving into coastal waters is decreasing the pH and carbonate ion concentration, thereby lowering the saturation state of calcium carbonate (CaCO3) minerals through a process named ocean acidification (OA). The unprecedented threats posed by such low pH on calcifying larvae of several edible oyster species have not yet been fully explored. Effects of low pH (7.9, 7.6, 7.4) on the early growth phase of Portuguese oyster (Crassostrea angulata) veliger larvae was examined at ambient salinity (34 ppt) and the low-salinity (27 ppt) treatment. Additionally, the combined effect of pH (8.1, 7.6), salinity (24 and 34 ppt) and temperature (24 °C and 30 °C) was examined using factorial experimental design. Surprisingly, the early growth phase from hatching to 5-day-old veliger stage showed high tolerance to pH 7.9 and pH 7.6 at both 34 ppt and 27 ppt. Larval shell area was significantly smaller at pH 7.4 only in low-salinity. In the 3-factor experiment, shell area was affected by salinity and the interaction between salinity and temperature but not by other combinations. Larvae produced the largest shell at the elevated temperature in low-salinity, regardless of pH. Thus the growth of the Portuguese oyster larvae appears to be robust to near-future pH level (> 7.6) when combined with projected elevated temperature and low-salinity in the coastal aquaculture zones of South China Sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As a consequence of anthropogenic CO2-driven ocean acidification (OA), coastal waters are becoming increasingly challenging for calcifiers due to reductions in saturation states of calcium carbonate (CaCO3) minerals. The response of calcification rate is one of the most frequently investigated symptoms of OA. However, OA may also result in poor quality calcareous products through impaired calcification processes despite there being no observed change in calcification rate. The mineralogy and ultrastructure of the calcareous products under OA conditions may be altered, resulting in changes to the mechanical properties of calcified structures. Here, the warm water biofouling tubeworm, Hydroides elegans, was reared from larva to early juvenile stage at the aragonite saturation state (Omega A) for the current pCO2 level (ambient) and those predicted for the years 2050, 2100 and 2300. Composition, ultrastructure and mechanical strength of the calcareous tubes produced by those early juvenile tubeworms were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and nanoindentation. Juvenile tubes were composed primarily of the highly soluble CaCO3 mineral form, aragonite. Tubes produced in seawater with aragonite saturation states near or below one had significantly higher proportions of the crystalline precursor, amorphous calcium carbonate (ACC) and the calcite/aragonite ratio dramatically increased. These alterations in tube mineralogy resulted in a holistic deterioration of the tube hardness and elasticity. Thus, in conditions where Omega A is near or below one, the aragonite-producing juvenile tubeworms may no longer be able to maintain the integrity of their calcification products, and may result in reduced survivorship due to the weakened tube protection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C.