998 resultados para Jacopone, da Todi, 1230-1306.
Resumo:
The aim of our study was to investigate whether dietary fat and meat intakes are associated with reflux esophagitis (RE), Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). In this all-Ireland case-control study, dietary intake data were collected using a food frequency questionnaire in 219 RE patients, 220 BE patients, 224 EAC patients and 256 frequency-matched controls between 2002 and 2005. Unconditional multiple logistic regression analysis was used to examine the association between dietary variables and disease risk using quartiles of intake, to attain odds ratios (ORs) and 95% confidence intervals (95% CIs), while adjusting for potential confounders. Patients in the highest quartile of total fat intake had a higher risk of RE (OR = 3.54; 95% CI = 1.32-9.46) and EAC (OR = 5.44; 95% CI = 2.08-14.27). A higher risk of RE and EAC was also reported for patients in the highest quartile of saturated fat intake (OR = 2.79; 95% CI = 1.11-7.04; OR = 2.41; 95% CI = 1.14-5.08, respectively) and monounsaturated fat intake (OR = 2.63; 95% CI = 1.01-6.86; OR = 5.35; 95% CI = 2.14-13.34, respectively). Patients in the highest quartile of fresh red meat intake had a higher risk of EAC (OR = 3.15; 95% CI = 1.38-7.20). Patients in the highest category of processed meat intake had a higher risk of RE (OR = 4.67; 95% CI = 1.71-12.74). No consistent associations were seen for BE with either fat or meat intakes. Further studies investigating the association between dietary fat and food sources of fat are needed to confirm these results.
Resumo:
mRNA chimeras from chromosomal translocations often play a role as transforming oncogenes. However, cancer transcriptomes also contain mRNA chimeras that may play a role in tumor development, which arise as transcriptional or post-transcriptional events. To identify such chimeras, we developed a deterministic screening strategy for long-range sequence analysis. High-throughput, long-read sequencing was then performed on cDNA libraries from major tumor histotypes and corresponding normal tissues. These analyses led to the identification of 378 chimeras, with an unexpectedly high frequency of expression (˜2 x 10(-5) of all mRNA). Functional assays in breast and ovarian cancer cell lines showed that a large fraction of mRNA chimeras regulates cell replication. Strikingly, chimeras were shown to include both positive and negative regulators of cell growth, which functioned as such in a cell-type-specific manner. Replication-controlling chimeras were found to be expressed by most cancers from breast, ovary, colon, uterus, kidney, lung, and stomach, suggesting a widespread role in tumor development.
Resumo:
The electronic band structure of vacuum cleaved single-crystal indium selenide has been investigated by X-ray and ultraviolet photoelectron spectroscopy. The valence band consists of three well separated groups, one derived from the Se 4s levels, and two derived from p-like wavefunctions. The band structure and valence band density of states has been calculated using a tight-binding single-layer approximation and all the major features in the experimental spectra are well accounted for. The spin-orbit splitting and electron loss structure associated with the In 4d core level is also reported.
Resumo:
A comparison of the clinicopathology of European bat lyssavirus (EBLV) types-1 and -2 and of rabies virus was undertaken. Following inoculation of mice at a peripheral site with these viruses, clinical signs of rabies and distribution of virus antigen in the mouse brain were examined. The appearance of clinical signs of disease varied both within and across the different virus species, with variation in incubation periods and weight loss throughout disease progression. The distribution of viral antigen throughout the regions of the brain examined was similar for each of the isolates during the different stages of disease progression, suggesting that antigen distribution was not associated with clinical presentation. However, specific regions of the brain including the cerebellum, caudal medulla, hypothalamus and thalamus, showed notable differences in the proportion of virus antigen positive cells present in comparison to other brain regions suggesting that these areas are important in disease development irrespective of virus species.
Resumo:
BackgroundRas-related nuclear protein (Ran) is required for cancer cell survival in vitro and human cancer progression, but the molecular mechanisms are largely unknown.MethodsWe investigated the effect of the v-myc myelocytomatosis viral oncogene homolog (Myc) on Ran expression by Western blot, chromatin immunoprecipitation, and luciferase reporter assays and the effects of Myc and Ran expression in cancer cells by soft-agar, cell adhesion, and invasion assays. The correlation between Myc and Ran and the association with patient survival were investigated in 14 independent patient cohorts (n = 2430) and analyzed with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided.ResultsMyc binds to the upstream sequence of Ran and transactivates Ran promoter activity. Overexpression of Myc upregulates Ran expression, whereas knockdown of Myc downregulates Ran expression. Myc or Ran overexpression in breast cancer cells is associated with cancer progression and metastasis. Knockdown of Ran reverses the effect induced by Myc overexpression in breast cancer cells. In clinical data, a positive association between Myc and Ran expression was revealed in 288 breast cancer and 102 lung cancer specimens. Moreover, Ran expression levels differentiate better or poorer survival in Myc overexpressing breast (?(2) = 24.1; relative risk [RR] = 9.1, 95% confidence interval [CI] = 3.3 to 24.7, P <.001) and lung (?(2) = 6.04; RR = 2.8, 95% CI = 1.2 to 6.3; P = .01) cancer cohorts.ConclusionsOur results suggest that Ran is required for and is a potential therapeutic target of Myc-driven cancer progression in both breast and lung cancers.
Resumo:
Recent murine studies have demonstrated that tumour-associated macrophages in the tumour microenvironment are a key source of the pro-tumourigenic cysteine protease, cathepsin S. We now show in a syngeneic colorectal carcinoma murine model that both tumour and tumour-associated cells contribute cathepsin S to promote neovascularisation and tumour growth. Cathepsin S depleted and control colorectal MC38 tumour cell lines were propagated in both wild type C57Bl/6 and cathepsin S null mice to provide stratified depletion of the protease from either the tumour, tumour-associated host cells, or both. Parallel analysis of these conditions showed that deletion of cathepsin S inhibited tumour growth and development, and revealed a clear contribution of both tumour and tumour-associated cell derived cathepsin S. The most significant impact on tumour development was obtained when the protease was depleted from both sources. Further characterisation revealed that the loss of cathepsin S led to impaired tumour vascularisation, which was complemented by a reduction in proliferation and increased apoptosis, consistent with reduced tumour growth. Analysis of cell types showed that in addition to the tumour cells, tumour-associated macrophages and endothelial cells can produce cathepsin S within the microenvironment. Taken together, these findings clearly highlight a manner by which tumour-associated cells can positively contribute to developing tumours and highlight cathepsin S as a therapeutic target in cancer.
Resumo:
Background: Evidence for non-steroidal anti-inflammatory drugs (NSAIDs) preventing head and neck cancer (HNC) is inconclusive; however, there is some suggestion that aspirin may exert a protective effect.
Methods: Using data from the United States National Cancer Institute Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, we examined the association between aspirin and ibuprofen use and HNC.
Results: Regular aspirin use was associated with a significant 22% reduction in HNC risk. No association was observed with regular ibuprofen use.
Conclusion: Aspirin may have potential as a chemopreventive agent for HNC, but further investigation is warranted.
Resumo:
PURPOSE: FKBPL and its peptide derivative, AD-01, have already demonstrated tumour growth inhibition and CD44 dependent anti-angiogenic activity. Here we explore the ability of AD-01 to target CD44 positive breast cancer stem cells (BCSCs). EXPERIMENTAL DESIGN: Mammosphere assays and flow cytometry were utilized to analyse the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anti-cancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75), primary patient samples and xenografts. Delays in tumour initiation were evaluated in vivo. The anti-stem cell mechanisms were determined using clonogenic assays, qPCR and immunofluorescence. RESULTS: AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere forming efficiency (MFE) and ESA+/CD44+/CD24- or ALDH+ cell subpopulations in vitro and tumour initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism appears to be due to AD-01-mediated BCSC differentiation demonstrated by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers, Nanog, Oct4 and Sox2, were also significantly reduced. Furthermore, we demonstrated additive inhibitory effects when AD-01 was combined with the Notch inhibitor, DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in BCSCs. Finally, FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs, highlighting a role for endogenous FKBPL in stem cell signalling. CONCLUSIONS: AD-01 has dual anti-angiogenic and anti-BCSC activity which will be advantageous as this agent enters clinical trial.
Resumo:
The analysis of clinical breast samples using biomarkers is integral to current breast cancer management. Currently, a limited number of targeted therapies are standard of care in breast cancer treatment. However, these targeted therapies are only suitable for a subset of patients and resistance may occur. Strategies to prevent the occurrence of invasive lesions are required to reduce the morbidity and mortality associated with the development of cancer. In theory, application of targeted therapies to pre-invasive lesions will prevent their progression to invasive lesions with full malignant potential. The diagnostic challenge for pathologists is to make interpretative decisions on early detected pre-invasive lesions. Overall, only a small proportion of these pre-invasive lesions will progress to invasive carcinoma and morphological assessment is an imprecise and subjective means to differentiate histologically identical lesions with varying malignant potential. Therefore differential biomarker analysis in pre-invasive lesions may prevent overtreatment with surgery and provide a predictive indicator of response to therapy. There follows a review of established and emerging potential druggable targets in pre-invasive lesions and correlation with lesion morphology.
Resumo:
The degree of gene hypermethylation in non-neoplastic colonic mucosa (NNCM) is a potentially important event in the development of colorectal cancer (CRC), particularly for the subgroup with a CpG island methylator phenotype (CIMP). In this study, we aimed to use an unbiased and high-throughput approach to evaluate the topography of DNA methylation in the non-neoplastic colonic mucosa (NNCM) surrounding colorectal cancer (CRC). A total of 61 tissue samples comprising 53 NNCM and 8 tumor samples were obtained from hemicolectomy specimens of two CRC patients (Cases 1 and 2). NNCM was stripped from the underlying colonic wall and samples taken at varying distances from the tumor. The level of DNA methylation in NNCM and tumor tissues was assessed at 1,505 CpG sites in 807 cancer-related genes using Illumina GoldenGate® methylation arrays. Case 1 tumor showed significantly higher levels of methylation compared to surrounding NNCM samples (P?
Resumo:
RUNX3 aberrations play a pivotal role in the oncogenesis of breast, gastric, colon, skin and lung tissues. The aim of this study was to characterize further the expression of RUNX3 in lung cancers. To achieve this, a lung cancer tissue microarray (TMA), frozen lung cancer tissues and lung cell lines were examined for RUNX3 expression by immunohistochemistry, while the TMA was also examined for EGFR and p53 expression. RUNX3 promoter methylation status, and EGFR and KRAS mutation status were also investigated. Inactivation of RUNX3 was observed in 70% of the adenocarcinoma samples, and this was associated with promoter hypermethylation but not biased to EGFR/KRAS mutations. Our results suggest a central role of RUNX3 downregulation in pulmonary adenocarcinoma, which may not be dependent of other established cancer-causing pathways and may have important diagnostic and screening implications.
Resumo:
Hepatocellular carcinoma (HCC) is the third common cause of cancer-related deaths and its prognostication is still suboptimal. The aim of this study was to establish a new prognostication algorithm for HCC.
Resumo:
Transcription factor RUNX3 is inactivated in a number of malignancies, including breast cancer, and is suggested to function as a tumor suppressor. How RUNX3 functions as a tumor suppressor in breast cancer remains undefined. Here, we show that about 20% of female Runx3(+/-) mice spontaneously developed ductal carcinoma at an average age of 14.5 months. Additionally, RUNX3 inhibits the estrogen-dependent proliferation and transformation potential of ERa-positive MCF-7 breast cancer cells in liquid culture and in soft agar and suppresses the tumorigenicity of MCF-7 cells in severe combined immunodeficiency mice. Furthermore, RUNX3 inhibits ERa-dependent transactivation by reducing the stability of ERa. Consistent with its ability to regulate the levels of ERa, expression of RUNX3 inversely correlates with the expression of ERa in breast cancer cell lines, human breast cancer tissues and Runx3(+/-) mouse mammary tumors. By destabilizing ERa, RUNX3 acts as a novel tumor suppressor in breast cancer.