966 resultados para Irrigação com déficit hídrico
Resumo:
The use of biofertilizers is interesting for agriculture as being an economical alternative as well as it is environmentally friendly by using organic waste and reducing the application of mineral fertilizers. The aim of this study was to evaluate the effect of biofertilizer doses of bovine origin (biodigester effluent) applied on the ground and two levels of irrigation on lettuce. The experiment was conducted under protection of a greenhouse in pots, applying to the soil different doses of biofertilizer of bovine origin obtained from anaerobic reactor (10, 20, 40 and 60 m3 ha-1) and mineral fertilizer as a witness in two irrigation levels calculated at 50 and 100% of reference evapotranspiration. The lettuce plants were analyzed in their: Height, leaves number, crown diameter, fresh weight and dry weight of shoots. The biofertilizer treatments showed better results than the mineral fertilizer and has increased with increasing doses of biofertilizer, the highest dose (60 m3 ha-1) showed the best results in all variables. For dry, mineral fertilization showed higher values. The irrigation levels had no effect on plant growth.
Resumo:
In sprinkler irrigation is important to have a good uniformity of application so that the water in the root zone does not show areas with little available water while others have percolating beyond the plant roots, even though the soil allows a lateral redistribution of water. A usual way to obtain the uniformity of irrigation is by measures of dispersion. The aim of this work was to evaluate the uniformity of water stored in a sand soil before and after non uniformity depth irrigation applied from one sprinkler, as well the variation of storage in a 0-0,45 m layer soil using a neutron probe. The statistical design was completely randomized, and for the variable Christiansen uniformity coefficient modified (CUCHH) were 10 treatments (the irrigation depth, 8 intervals of readings storage, more the existing one before irrigation added to the irrigation depth). For the variable soil water, the treatments were the same, excepting the irrigation depth. Despite the low surface uniformity (16.3%), there was not significantly difference between the storage uniformity before, after irrigation and the potential, however there was from these to the surface uniformity. From de irrigation depth, 15.3 mm, only 6.1 mm remained in the layer from 0 to 0.45 m. There was not significantly difference between the water stored in the soil before and after irrigation within a period of up to 134 hours, being the increase in storage due to irrigation was just 11.7%.
Resumo:
The objective of the present study was to analyze the most appropriate water depth for maintaining a good quality of Bermudas Grass (Cynodon dactylon) for soccer fields while saving water and electrical resources. Four treatments were used: T1 - irrigated with a water depth of 50% of evapotranspiration (ETo), T2 - irrigated with a water depth of 75% of ETo, T3 - irrigated with a water depth of 100% of ETo and T4 - irrigated with a water depth of 150% of ETo, all treatments were irrigated daily. The reference ETo was obtained by the Penman-Monteith method. The study was conducted in an experimental area of the Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro - Campus Uberaba, Uberaba, Minas Gerais, Brazil, from June to September 2010 and from January to March 2011. Three evaluations of the variables were performed during the experimental period. The samples were obtained with the help of a cylindrical extractor with 10 cm in diameter and 30 cm in height. In each sample height and dry organic matter (leaf, root and organic material) were analyzed. The experimental design was randomized block with four treatments in five blocks. No significant differences were observed for dry matter and height (roots and organic material). The best results were those for T4 which obtained the greatest height.
Resumo:
Agriculture is an activity in which there is the possibility of using lower quality water and reuse appears as an alternative for irrigation. However, the negative environmental effects of reuse must be understood. The objective of the present work was to verify the potential of groundwater contamination by nitrogen duo to drip irrigation with effluent from domestic wastewater treatment. Three crop cycles of lettuce cv. Raider were conducted, the first between October and November 2009, the second in April and May 2010 and the third one in June and July 2010. The use of effluents was compared with potable water at accumulated water depths of 98.8 mm for the first, 98.4 mm for the second and 119 mm for the third cycle. Soil percolate concentrations of nitrate, nitrite and ammonia were studied at 0.25 m and 0.50 m depths in a completely randomized design. Percolate concentrations of nitrite and ammonia in soil irrigated with effluents showed no groundwater contamination risk. Nitrate however, caused concern, albeit with similar concentrations for both effluent and potable water.
Resumo:
The aim of this study was to evaluate the effect of different irrigation depths and nitrogen levels on the agronomic characteristics of inoculated cowpea. The experiment was arranged in splitplots, with the levels of nitrogen in the plots and the depth of irrigation in the splitplots, in a randomized block design, with two repetitions. The irrigation depth corresponded to 578 mm (L1), 512 mm (L2), 429 mm (L3), 299 mm (L4) and 240 mm (L5), and the nitrogen levels of 0, 30, 60 and 90 kg ha-1 of N. The nitrogen levels showed significant effect on the yield components of cowpea. The irrigation depth showed significant effects on productivity of bean cowpea, with the depth of 426.21 mm estimated for obtaining the maximum productivity of 2820.03 kg ha-1.
Resumo:
An experiment was carried out during the period of January to July/2010, in municipality of Areia, Paraiba State, Brazil, in order to evaluate effects of the irrigation with saline water, bovine biofertilizer and drainage of the soil on water consumption and growth of neem seedlings. The experimental design was in randomized blocks using factorial 5×2×2, referring to five levels of saline water (0.5; 1.5; 3.0; 4.5; 6.0 dS nr-1) in soil without and with bovine biofertilizer and in pots without and with drainage. In plants the water consumption, growth in height, stem diameter, number of leaves, dry matter of roots, aerial part and total dry mass were evaluated and in soil the electrical conductivity of saturation extract - EC was determined. The bovine biofertilizer, after dilution in non saline water (0.49 dS nr-1) e no chlorinated water in 1:1 ratio was applied once two days before sowing, equivalent to 10% of substrate volume. Irrigation was applied daily with each water type applying volume sufficient to maintain the soil with water content at level of field capacity. From results the increase in salinity of water inhibited the water consumption by plants independently of the soil with or without bovine biofertilizer. The salinity of water in soil with and without bovine biofertilizer also reduced the growth of neem plants but with more pronounced effect in the treatments without application of organic fertilizer to soil in liquid form.
Resumo:
The crop of soursop has been known for presenting great potential for the domestic market and good prospects for export. In this context, an experiment was conducted in the municipality of Remigio in the state of Paraiba, in order to evaluate the effects of irrigation depths applied weekly on the productive behavior and postharvest quality of fruits of soursop 'Morada' in the soil with and without mulching with crop residues. Treatments were arranged in randomized blocks with three replications and three plants per plot, using a factorial arrangement 5×2, referring to the soil with and without mulching with crop residues, and five irrigation depths of 0, 4.3, 8.6, 12.9 and 17.2 mm plant1. Irrigation was performed manually, once a week from September 2008 to March 2009. The presence of mulch on the soil and increasing depths of irrigation elevated the values of mean mass, production per plant and yield of soursop 'Morada', and decreased the levels of soluble solids.
Resumo:
Salt excess in soil and water used for irrigation can cause significant loss of production and growth in cultivated plants. Among some options for reduction of negative effects of salts to plants in cultivated areas, fermented bio fertilizer has been used to grow vegetables and fruit tree irrigated with saline water. The study aimed at evaluating the behavior of the noni plant to salinity of the irrigation water in substrate with and with no bio fertilizer. Treatments were arranged in a randomized block design with four replications, using a 5 × 2 factorial arrangement. Five levels of electrical conductivity of irrigation water (0.5, 1.5, 3.0, 4.5, 6.0 dS m-1) were used in substrates with and with no bio fertilizer. Parameters were evaluated as follows: plant height, stem diameter, number of leaves, leaf area, shoot dry matter and water consumption. All evaluated variables were negatively affected by the increase in salt concentration of the irrigation water, but always with less intense effects in treatments with bio fertilizer.The bio fertilizer does not eliminate, but mitigates the negative effects of salts in noni plants.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Incluye Bibliografía
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Incluye Bibliografía