826 resultados para Invertebrates
Resumo:
The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal's ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C.
Resumo:
Background. Ocean acidification as a result of increased anthropogenic CO2 emissions is occurring in marine and estuarine environments worldwide. The coastal ocean experiences additional daily and seasonal fluctuations in pH that can be lower than projected end of century open ocean pH reductions. Projected and current ocean acidification have wide-ranging effects on many aquatic organisms, however the exact mechanisms of the impacts of ocean acidification on many of these animals remains to be characterized. Methods. In order to assess the impact of ocean acidification on marine invertebrates, Pacific oysters (Crassostrea gigas) were exposed to one of four different pCO2 levels for four weeks: 400 µatm (pH 8.0), 800 µatm (pH 7.7), 1000 µatm (pH 7.6), or 2800 µatm (pH 7.3). At the end of 4 weeks a variety of physiological parameters were measured to assess the impacts of ocean acidification: tissue glycogen content and fatty acid profile, shell micromechanical properties, and response to acute heat shock. To determine the effects of ocean acidification on the underlying molecular physiology of oysters and their stress response, some of the oysters from 400 µatm and 2800 µatm were exposed to an additional mechanical stress and shotgun proteomics were done on oysters from high and low pCO2 and from with and without mechanical stress. Results. At the end of the four week exposure period, oysters in all four pCO2 environments deposited new shell, but growth rate was not different among the treatments. However, micromechanical properties of the new shell were compromised by elevated pCO2. Elevated pCO2 affected neither whole body fatty acid composition, nor glycogen content, nor mortality rate associated with acute heat shock. Shotgun proteomics revealed that several physiological pathways were significantly affected by ocean acidification, including antioxidant response, carbohydrate metabolism, and transcription and translation. Additionally, the proteomic response to a second stress differed with pCO2, with numerous processes significantly affected by mechanical stimulation at high versus low pCO2 (all proteomics data are available in the ProteomeXchange under the identifier PXD000835). Discussion. Oyster physiology is significantly altered by exposure to elevated pCO2, indicating changes in energy resource use. This is especially apparent in the assessment of the effects of pCO2 on the proteomic response to a second stress. The altered stress response illustrates that ocean acidification may impact how oysters respond to other changes in their environment. These data contribute to an integrative view of the effects of ocean acidification on oysters as well as physiological trade-offs during environmental stress.
Resumo:
Although ocean acidification is expected to reduce carbonate saturation and yield negative impacts on open-ocean calcifying organisms in the near future, acidification in coastal ecosystems may already be affecting these organisms. Few studies have addressed the effects of sedimentary saturation state on benthic invertebrates. Here, we investigate whether sedimentary aragonite saturation (Omega aragonite) and proton concentration ([H+]) affect burrowing and dispersal rates of juvenile soft-shell clams (Mya arenaria) in a laboratory flume experiment. Two size classes of juvenile clams (0.5-1.5 mm and 1.51-2.5 mm) were subjected to a range of sediment Omega aragonite and [H+] conditions within the range of typical estuarine sediments (Omega aragonite 0.21-1.87; pH 6.8-7.8; [H+] 1.58 × 10**-8-1.51 × 10**- 7) by the addition of varying amounts of CO2, while overlying water pH was kept constant ~ 7.8 (Omega aragonite ~ 1.97). There was a significant positive relationship between the percent of juvenile clams burrowed in still water and Omega aragonite and a significant negative relationship between burrowing and [H+]. Clams were subsequently exposed to one of two different flow conditions (flume; 11 cm/s and 23 cm/s) and there was a significant negative relationship between Omega aragonite and dispersal, regardless of clam size class and flow speed. No apparent relationship was evident between dispersal and [H+]. The results of this study suggest that sediment acidification may play an important role in soft-shell clam recruitment and dispersal. When assessing the impacts of open-ocean and coastal acidification on infaunal organisms, future studies should address the effects of sediment acidification to adequately understand how calcifying organisms may be affected by shifting pH conditions.
Resumo:
Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, 1H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.
Resumo:
The effects of ocean acidification on lower invertebrates such as sponges may be pronounced because of their low capacity for acid-base regulation. However, so far, most studies have focused on calcifiers. We present the first study of the effects of ocean acidification on the Porifera. Sponge species composition and cover along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy) was measured at sites with normal pH (8.1-8.2), lowered pH (mean 7.8-7.9, min 7.4-7.5) and extremely low pH (6.6). There was a strong correlation between pH and both sponge cover and species composition. Crambe crambe was the only species present in any abundance in the areas with mean pH 6.6, seven species were present at mean pH 7.8-7.9 and four species (Phorbas tenacior, Petrosia ficiformis, Chondrilla nucula and Hemimycale columella) were restricted to sites with normal pH. Sponge percentage cover decreased significantly from normal to acidified sites. No significant effect of increasing CO2 levels and decreasing pH was found on spicule form in Crambe crambe. This study indicates that increasing CO2 concentrations will likely affect sponge community composition as some demosponge species appear to be more vulnerable than others. Further research into the mechanisms by which acidification affects sponges would be useful in predicting likely effects on sessile marine communities.
Resumo:
Rising levels of atmospheric carbon dioxide and the concomitant increased uptake of this by the oceans is resulting in hypercapnia-related reduction of ocean pH. Research focussed on the direct effects of these physicochemical changes on marine invertebrates has begun to improve our understanding of impacts at the level of individual physiologies. However, CO2-related impairment of organisms' contribution to ecological or ecosystem processes has barely been addressed. The burrowing ophiuroid Amphiura filiformis, which has a physiology that makes it susceptible to reduced pH, plays a key role in sediment nutrient cycling by mixing and irrigating the sediment, a process known as bioturbation. Here we investigate the role of A. filiformis in modifying nutrient flux rates across the sediment-water boundary and the impact of CO2- related acidification on this process. A 40 day exposure study was conducted under predicted pH scenarios from the years 2100 (pH 7.7) and 2300 (pH 7.3), plus an additional treatment of pH 6.8. This study demonstrated strong relationships between A. filiformis density and cycling of some nutrients; activity increases the sediment uptake of phosphate and the release of nitrite and nitrate. No relationship between A. filiformis density and the flux of ammonium or silicate were observed. Results also indicated that, within the timescale of this experiment, effects at the individual bioturbator level appear not to translate into reduced ecosystem influence. However, long term survival of key bioturbating species is far from assured and changes in both bioturbation and microbial processes could alter key biogeochemical processes in future, more acidic oceans.
Resumo:
Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments-the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone's tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A. viridis regulates its internal trace element concentrations by compartmentalization and excretion and that these features contribute to its resilience and potential success at the trace element-rich high pCO2 vent.
Resumo:
Anthropogenic carbon dioxide (CO2) is being absorbed into the ocean, altering seawater chemistry, with potentially negative impacts on a wide range of marine organisms. The early life stages of invertebrates with internal and external aragonite structures may be particularly vulnerable to this ocean acidification. Impacts to cephalopods, which form aragonite cuttlebones and statoliths, are of concern because of the central role they play in many ocean ecosystems and because of their importance to global fisheries. Atlantic longfin squid (Doryteuthis pealeii), an ecologically and economically valuable taxon, were reared from eggs to hatchlings (paralarvae) under ambient and elevated CO2 concentrations in replicated experimental trials. Animals raised under elevated pCO2 demonstrated significant developmental changes including increased time to hatching and shorter mantle lengths, although differences were small. Aragonite statoliths, critical for balance and detecting movement, had significantly reduced surface area and were abnormally shaped with increased porosity and altered crystal structure in elevated pCO2-reared paralarvae. These developmental and physiological effects could alter squid paralarvae behavior and survival in the wild, directly and indirectly impacting marine food webs and commercial fisheries.
Resumo:
Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks
Resumo:
Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here we tested the impact of long term (up to 16 months) and trans life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1200 µatm, compared to control 400 µatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5 fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2, had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.
Resumo:
Antarctic calcified macroorganisms are particularly vulnerable to ocean acidification because many are weakly calcified, the dissolution rates of calcium carbonate are inversely related to temperature, and high latitude seas are predicted to become undersaturated in aragonite by the year 2100. We examined the post-mortem dissolution rates of aragonitic and calcitic shells from four species of Antarctic benthic marine invertebrates (two bivalves, one limpet, one brachiopod) and the thallus of a limpet shell-encrusting coralline alga exposed to acidified pH (7.4) or non-acidified pH (8.2) seawater at a constant temperature of 4 C. Within a period of only 14-35 days, shells of all four species held in pH 7.4 seawater had suffered significant dissolution. Despite calcite being 35% less soluble in seawater than aragonite, there was surprisingly, no consistent pattern of calcitic shells having slower dissolution rates than aragonitic shells. Outer surfaces of shells held in pH 7.4 seawater exhibited deterioration by day 35, and by day 56 there was exposure of aragonitic or calcitic prisms within the shell architecture of three of the macroinvertebrate species. Dissolution of coralline algae was confirmed by differences in weight loss in limpet shells with and without coralline algae. By day 56, thalli of the coralline alga held in pH 7.4 displayed a loss of definition of the conceptacle pores and cracking was evident at the zone of interface with limpet shells. Experimental studies are needed to evaluate whether there are adequate compensatory mechanisms in these and other calcified Antarctic benthic macroorganisms to cope with anticipated ocean acidification. In their absence, these organisms, and the communities they comprise, are likely to be among the first to experience the cascading impacts of ocean acidification.
Resumo:
As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck), at pCO(2) levels of 469 (ambient), 807, 1164, and 1599 µatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO(2) level the first 12 h was observed in the elevated pCO(2) groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO(2) level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO(2) group. Shell length and height were reduced by 8 and 15 %, respectively, when pCO(2) increased from ambient to 1599 µatm. Development of normal hinges was negatively affected by elevated pCO(2) levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO(2) levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO(2) levels within the range of what is projected towards year 2250, although the initial drop in pCO(2) level may have overestimated the effect of the highest pCO(2) levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the juvenile and adult stages.
Resumo:
Newly settled recruits typically suffer high mortality from disturbances, but rapid growth reduces their mortality once size-escape thresholds are attained. Ocean acidification (OA) reduces the growth of recruiting benthic invertebrates, yet no direct effects on survivorship have been demonstrated. We tested whether the reduced growth of coral recruits caused by OA would increase their mortality by prolonging their vulnerability to an acute disturbance: fish herbivory on surrounding algal turf. After two months' growth in ambient or elevated CO2 levels, the linear extension and calcification of coral (Acropora millepora) recruits decreased as CO2 partial pressure (pCO2) increased. When recruits were subjected to incidental fish grazing, their mortality was inversely size dependent. However, we also found an additive effect of pCO2 such that recruit mortality was higher under elevated pCO2 irrespective of size. Compared to ambient conditions, coral recruits needed to double their size at the highest pCO2 to escape incidental grazing mortality. This general trend was observed with three groups of predators (blenny, surgeonfish, and parrotfish), although the magnitude of the fish treatment varied among species. Our study demonstrates the importance of size-escape thresholds in early recruit survival and how OA can shift these thresholds, potentially intensifying population bottlenecks in benthic invertebrate recruitment.
Resumo:
The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO2-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH4Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na-free seawater indicate a potential role of Na/H plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited.